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Abstract. Quantifying variation in adaptive traits is essential for un-
derstanding evolutionary mechanisms such as mimicry in biology. Specif-
ically, tropical Heliconius butterflies have bold wing patterns to warn off
predators and have evolved by leveraging mimicry as a form of natural
selection. In this work, we focus on taking a computational approach to
modeling how butterflies perceive conspecifics, co-mimics, and other sub-
species, and how they are perceived by external agents (birds, humans)
using visual acuity measurements. We train a series of ResNet50 models
with additive angular margin loss on images of Heliconius melpomene
and Heliconius erato co-mimics processed under different visual acuities.

1 Introduction

Quantifying variation in adaptive traits is key to understanding evolutionary
phenomena like mimicry. Heliconius butterflies (Lepidoptera; Nymphalidae) are
aposematic, using defensive chemicals and warning coloration to deter predators.
Multiple species converge on similar warning color patterns through Mullerian
Mimicry, which leads to a learned aversion by predators. While predator-driven
selection pushes for uniform wing patterns, sexual selection drives divergence
to help butterflies distinguish between conspecifics (same subspecies) and het-
erospecifics (different species or groups) [3].

The mechanisms by which mimetic butterflies differentiate conspecifics from
co-mimics remain unclear. It is believed to be multimodal, involving behavior,
chemical signals, and visual cues [1,3,7]. For example, Heliconius butterflies use
ultraviolet (UV) cues during mating to identify conspecifics, as the absence of
UV leads to increased mimicry misidentification [3].

Behavioral and chemical studies seeking to understand identification mech-
anisms in co-mimic butterflies are informative but labor-intensive. Visual data,
however, paired with modern computational methods such as deep learning, of-
fer a more accessible starting point for understanding how mimetic butterflies
perceive each other and how predators perceive them.



2 M. Ramirez and C. Lawrence et al.

Deep learning, particularly in computer vision, is powerful for extracting
distinguishing features from images. In this work, we apply deep learning to
images processed under bird and butterfly visual acuities (R, AcuityView [2]) to
investigate whether visual acuity alone can influence species classification.

Our study models how butterflies perceive conspecifics, co-mimics, and het-
erospecifics, and how they are perceived by birds and humans. We run species
classification experiments using images of Heliconius melpomene and Helico-
nius erato subspecies, processed under different visual acuities. We build on [5]
by incorporating visual acuity and an additive angular margin loss to improve
learning across multiple subspecies.

Our deep learning experiments address three key questions: (1) Can com-
putational methods detect similarities and differences in co-mimic images? (2)
How does visual acuity (bird vs. butterfly) affect classification accuracy? (3)
Does acuity influence the granularity of image traits used for classification?

We train models on all 20 subspecies (AllNet), only Heliconius erato sub-
species (EratoNet), and only Heliconius melpomene subspecies (MelpomeneNet)
to assess baseline performance and any classification bias arising from species-
specific training. We demonstrate that deep learning can effectively differenti-
ate traits among conspecifics, co-mimics, and heterospecifics, with visual acuity
playing a stronger role in species classification for bird predators more so than
butterflies.

2 Dataset

The dataset consists of a total of 3822 images sourced from the Heliconius Col-
lection (Cambridge Butterfly) dataset [6]. Images consist of the dorsal view of 10
Heliconius erato subspecies and 10 Heliconius melpomene subspecies (Figure 1).
The subspecies were chosen to be 1:1 H.erato and H.melpomene mimic pairings
(Supplementary material, Table 3).

Fig. 1: Top row Heliconius melpomene subspecies left-to-right. Bottom row He-
liconius erato subspecies left-to-right. Columns reflect comimic pairings between
H.melpomene and H.erato.

We process all 3822 images by using a segmentation model to remove the
background from all images and insert a black background (code available at:
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https://github.com/Imageomics/wing-segmentation). We resize the images
down from their original resolutions into dimensions of 256x256, as AcuityView
requires images be square and dimensions be a factor of 2n [2]. We use the Helico-
nius butterfly acuities (female, male, morphological, behavioral) measured in [8]
to create four distinct Heliconius acuity datasets. Since there is little data on
visual acuity of Jacamars (Heliconius’ known bird predator) [3], we use the acu-
ity belonging to Kingfishers (Supplementary material, Table 4) to approximate
the visual acuity of a bird predator and create an additional dataset from our
3822 images. Finally, we keep a version of the original images unprocessed and
denote this dataset version as "no acuity". We end up with a total of six different
datasets of the same set of images processed under different visual acuities.

3 Methods

3.1 Model Architecture: ResNet50 and Additive Angular Margin
Loss

We fine-tune ResNet50 (pretrained on ImageNet) with an ArcFace classifica-
tion head individually on each acuity dataset. The ArcFace classification head
incorporates additive angular margin loss to enhance discrimination between
classes [4]. This is particularly beneficial for separating the visually similar classes
of co-mimic butterflies. We implement several versions of the model, with the
only difference being the data seen during training (the architecture remains the
same). The differences are highlighted in Table 1. We ignore other light spectra
(such as ultraviolet and violet), as well as behavior and motion components,
leaving these aspects for future work.

Model Species seen at training time
AllNet H. melpomene and H. erato
EratoNet H. erato only
MelpomeneNet H. melpomene

Table 1: Species seen during training for different models.

3.2 Training AllNet

We begin by training our model for species classification on all 20 subspecies of
H. erato and H. melpomene present in our image dataset. We refer to this model
as AllNet and train a version of it for each acuity dataset (original, Heliconius
male morphological, Heliconius female morphological, Heliconius male behav-
ioral, Heliconius female behavioral, and kingfisher acuity). This setup aims to
establish a baseline performance for the model’s ability to discriminate between
co-mimics for each acuity.

https://github.com/Imageomics/wing-segmentation
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3.3 Training EratoNet and MelpomeneNet

We then set up an asymmetrical species classification experiment by training our
model on one species (H. erato or H.melpomene) without access to their respec-
tive co-mimics (Table 1). We name these models EratoNet and MelpomeneNet,
respectively. We aim to model the biological context in which model and mimic
are presented to butterflies and birds. Furthermore, by training these asymmet-
rical models we can test whether there is any information loss when training on
one species over the other.

4 Results

Given the dataset’s class imbalance, we measure model performance through
both micro and macro accuracy. For each trained model, we quantify the visual
similarity of images processed under different acuities by computing pairwise Eu-
clidean distances across image feature representations produced by the model.
We also use GradCAM to analyze model predictions and gain insights into the
specific image components that influence our models’ ability to distinguish be-
tween co-mimics across different acuities.

4.1 AllNet

Table 2 shows the micro and macro accuracies of AllNet under various acuity
conditions. AllNet achieved its best performance in mimic discrimination with
Kingfisher acuity, reaching a micro accuracy of 0.972 and a macro accuracy
of 0.875 (Table 2). Performance declined when AllNet was trained on datasets
processed under the four butterfly acuities. Notably, models trained with Heli-
conius male visual acuities outperformed those with female acuities across both
behavioral and morphological categories. Additionally, behavioral acuities out-
performed morphological ones for both males and females.

4.2 EratoNet

Table 2 provides an evaluation of the EratoNet model, trained exclusively on
Heliconius erato subspecies under six different visual acuity conditions. The per-
formance is assessed on both Erato and Melpomene subspecies, highlighting how
well the model is able to discriminate between co-mimics despite only seeing the
Heliconius erato member of each erato:melpomene co-mimic pair at training.

EratoNet demonstrates consistent accuracy on Heliconius erato subspecies
across various acuity model variants. Notably, the model trained with Helico-
nius male morphological acuity achieves the highest micro and macro accuracy
(0.983 micro/ 0.873 macro Table 2). Accuracy (micro and macro) does not show-
case a clear drop from high resolution images (Kingfisher and no acuity) to low
resolution images (butterfly acuities). Comparison across models does not follow
any clear pattern. Accuracies across acuity model variants are similar, and in
some cases identical.
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Table 2: Performance of AllNet, EratoNet, and MelpomeneNet Models Across Differ-
ent Acuity Conditions

Acuity Condition Model Test On Micro Acc Macro Acc

No Acuity AllNet - 0.963 0.838
EratoNet Erato 0.978 0.844
EratoNet Melpomene 0.971 0.771
MelpomeneNet Melpomene 0.965 0.892
MelpomeneNet Erato 0.955 0.869

Heliconius Male Behavioral AllNet - 0.939 0.804
EratoNet Erato 0.969 0.784
EratoNet Melpomene 0.945 0.704
MelpomeneNet Melpomene 0.965 0.927
MelpomeneNet Erato 0.971 0.913

Heliconius Female Behavioral AllNet - 0.915 0.767
EratoNet Erato 0.978 0.844
EratoNet Melpomene 0.933 0.711
MelpomeneNet Melpomene 0.949 0.904
MelpomeneNet Erato 0.945 0.870

Heliconius Male Morphological AllNet - 0.916 0.760
EratoNet Erato 0.983 0.873
EratoNet Melpomene 0.938 0.746
MelpomeneNet Melpomene 0.953 0.863
MelpomeneNet Erato 0.941 0.805

Heliconius Female Morphological AllNet - 0.898 0.732
EratoNet Erato 0.971 0.809
EratoNet Melpomene 0.943 0.751
MelpomeneNet Melpomene 0.957 0.859
MelpomeneNet Erato 0.963 0.853

Kingfisher AllNet - 0.972 0.875
EratoNet Erato 0.978 0.844
EratoNet Melpomene 0.964 0.733
MelpomeneNet Melpomene 0.973 0.898
MelpomeneNet Erato 0.955 0.847

Testing EratoNet on melpomene subspecies led to a decrease in performance
across all acuity model variants (Table 2). Again, no clear pattern was evident
into deciphering how advantageous one form of acuity is over another, based on
model accuracy.

4.3 MelpomeneNet

Table 2 provides an evaluation of the MelpomeneNet model, trained exclusively
on Heliconius melpomene subspecies under six different visual acuity conditions.
The Heliconius male behavioral acuity MelpomeneNet model had the highest
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macro accuracy on the Melpomene test set of images (0.927, 2). When testing
MelpomeneNet on erato subspecies (unseen at training time), the drop in per-
formance (micro and macro accuracy) is not as large as those in EratoNet tested
on melpomene (unseen at training time)(Tables 2, 2).

EratoNet and MelpomeneNet both had a butterfly acuity model variant out-
perform models trained on images processed at higher resolutions (no acuity
applied and kingfisher acuity applied) (Tables 2, 2). However, in AllNet (all 20
subspecies seen at training time), models trained on images with higher resolu-
tions (Kingfisher acuity and no acuity) outperformed models trained on images
of lower resolution (butterfly acuities).

4.4 Embedding Distance

Training the model on all 20 subspecies (AllNet) produced results consistent
with those observed in [5]. We find that the pairwise Euclidean distance of
image embeddings for conspecifics is the smallest, while the distance between
heterospecific image embeddings is the largest (Figure 2). The average distance
between image embeddings of co-mimics falls between those of conspecifics and
heterospecifics, but is much closer to the range of heterospecifics (Figure 2).

Similar trends are observed in the embedding distances for EratoNet and
MelpomeneNet, though the range of co-mimic embedding distances shifts to
resemble the range of conspecifics rather than heterospecifics (Figures 4, 5).
Consequently, images of unseen subspecies are more likely to be misclassified as
co-mimics across all acuities for both EratoNet and MelpomeneNet models.

Fig. 2: Pairwise euclidean distances between embeddings for Resnet50 trained on all
20 H.erato and H.melpomene subspecies (All_Net).
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5 Discussion

5.1 Effectiveness of ArcFace in Discriminating Co-Mimic Subspecies
under Bird and Butterfly Acuity

The embedding distances derived from AllNet demonstrate the efficacy of inte-
grating an ArcFace classification head to enhance class discrimination. Despite
their visual similarity, the average distance between embeddings of co-mimic
subspecies aligns more closely with heterospecific embeddings than conspecific
embeddings (Figure 2). The model effectively discriminates between classes by
maximizing distances even when confronted with nearly identical wing patterns
among co-mimics. Notably, the model distinguishes co-mimics as distinct classes
with minimal confusion, as evidenced by the larger average distance between co-
mimic embeddings when compared to conspecifics (Figure 2). Additionally, the
well-defined image embedding clusters in t-SNE visualizations (Figure 3) show
a clear learned representation of our subspecies classes by AllNet.

Our findings align with prior observations made by [5], showing that deep
learning can discriminate well enough between visually similar classes in the
context of mimicry. We find that when training AllNet on all 20 subspecies, the
distance between embeddings of co-mimics is more akin to that of heterospecifics
(Figure 2) due to the inclusion of an ArcFace classification head in our model.

5.2 Acuity Impacts Trait Localization

Higher resolution images, such as those with kingfisher acuity and no acuity ad-
justments, led to improved species classification performance for AllNet (Table
2). Conversely, in the EratoNet and MelpomeneNet models, which do not si-
multaneously view both members of a co-mimic pair, models trained on images
processed with butterfly visual acuity (lower resolution) outperform those us-
ing unprocessed images and images processed with kingfisher acuity. GradCAM
results for EratoNet (Supplementary text, Figures 10, 11) reveal that under but-
terfly visual acuities, the model relies on larger, less detailed wing sections for
classification. In contrast, for original images and those processed with king-
fisher visual acuity, the model focuses on finer details and performs more precise
trait localization. Similar patterns are observed in AllNet and MelpomeneNet
(Supplementary text, Figures 9, 8, 12, 13).

T-SNE embedding projections for both EratoNet and MelpomeneNet (Sup-
plementary text, Figures 6, 7) show that there is still a clear distinction made
between model species (seen at train time) and mimic species (unseen at train
time). Our GradCAM results reveal insight that although the same goal of
species classification is achieved, the information that the model leverages to
do so differs by acuity.

6 Conclusion

Our experiments show that deep learning can effectively learn how to differ-
entiate visually similar co-mimic classes under bird and butterfly acuities when
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(a) Original (b) Heliconius Male Behavioral Acuity

(c) Heliconius Female Behavioral Acuity (d) Heliconius Male Morphological Acuity

(e) Heliconius Female Morphological Acuity (f) Kingfisher Acuity

Fig. 3: T-SNE plots of image embeddings generated by AllNet under different acuities.

provided with all 20 subspecies classes at training time (AllNet). The results from
EratoNet and MelpomeneNet show that which species you train on impacts the
model’s ability to recognize and differentiate the model species from the mimic
species. The role of visual acuity was varied across different butterfly visual acu-
ity estimates, but generally robust for Kingfisher acuity. Kingfisher acuity models
consistently demonstrated a high macro accuracy and a large drop in perfor-
mance when tested on the unseen mimic for the EratoNet and MelpomeneNet
models, suggesting that the enhanced resolution of images via bird acuity is par-
ticularly beneficial for co-mimic differentiation. Results from the butterfly acuity
model variants across experiments (AllNet, EratoNet, MelpomeneNet) demon-
strate that species classification remains feasible, although the models leverage
different wing sections for information to achieve this.

In this set of experiments, visual acuity showed to be advantageous for co-
mimic differentiation to bird predators. As [3] have noted, species classification
in Heliconius butterflies is believed to be multimodal. Thus, it is possible that
the role of visual acuity for conspecific recognition in Heliconius butterflies is not
as influential as visual cues in ultraviolet-sensitive vision systems (UVS), flight
patterns, or chemosensory information.
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