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Abstract. Microplastics, formed by the breakdown of non-biodegradable
plastic, pose a significant threat to aquatic ecosystems. To address this,
accurate methods for quantifying microplastic concentrations are nec-
essary for informing policy and prosecuting polluters. Current detection
methods, however, require expensive equipment and are often unreliable.
We propose a new, cost-effective methodology that leverages depth-from-
focus methodologies to perform 3D analysis of microplastics. 3D analy-
sis will provide more accurate measures of concentration than existing
count-based methodologies. Additionally, qualitative analysis of the data
can provide deeper insights into the physical and biological mechanisms
behind microplastic-driven ecosystem damage.

1 Introduction

1.1 Problem Statement

Microplastic (defined as water-insoluble, solid polymer particles that are ≤5mm
in size [5]) pollution has become an increasingly alarming issue. The number of
microplastics in aquatic ecosystems is concerning: there are between 82 and 358
trillion microplastics in the world’s oceans, weighing between 1.1 and 4.9 million
tons. [7].

Microplastics (MP) have significant impacts on marine ecosystems. Accord-
ing to Lee et al [15], "Microplastics ... move easily through the food chain and
persist in the environment". Ingestion of MPs results in "physical and mechan-
ical harm to marine organisms", causing "abnormalities in internal organs" and
malnutrition due to "microplastic accumulation". Even exposure to MPs can
cause harm: MPs "attach to the surface of skin, crust and ectoderm" [4] of small
marine organisms.

To combat this, we present a novel method for cost-effective and automated
analysis of MPs in aquatic ecosystems. We improve the accuracy and quality
of existing microplastics quantification methods by using depth-from-focus tech-
niques to create 3D models of MPs.

Additionally, accurate 3D models of MPs can give insight into specific effects
of MPs on ecosystems. For example, Ward et al. [23] find that "the extent of
MP transport and deposition varied significantly by shape". Furthermore, they
even find that "accurately modelling the shape of ... microplastic ... is crucial
to determining the range and amount of [microplastic] deposition globally". The
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shape of MPs is also significant in biological processes: according to Han et
al. [10], "Nonspherical particles ... cylindrical polymer brushes ... and wirelike
objects ... each [have] a unique influence on the cell".

1.2 Related Work

Microplastic Quantification Most forms of MP quantification are done by
counting the number of MPs [13]. However, this methodology is actually inef-
fective in accurately quantifying MP concentrations. For example, MPs that are
more prone to breakdown [22] may be mistakenly identified as being more preva-
lent. This could lead to ineffective policy and mitigation efforts, as true sources
of MP pollution are not properly dealt with. Thus, measures like volume (which
can be measured through 3D analysis) are necessary for a more accurate and
effective assessment of MP pollution.

Raman Spectroscopy Raman spectroscopy [2] is based on the scattering of
light, where a small fraction of the light interacts with the molecular vibra-
tions of the sample, causing a shift in the energy of the scattered light. This
shift, known as the Raman shift, provides a distinct spectrum that can be used
to identify physical and chemical properties of the given substance. Although
Raman spectroscopy is a popular technique in MP research, Raman spectrome-
ters are expensive and require specialist knowledge to operate. Our automated
approach thus offers a viable alternative with improved accessibility.

Mathematical Model Barchiesi et al. [3] propose a model to estimate surface
area and volume from 2D images: the model assumes a best-fit ellipse to estimate
the volume of MPs. Given the major axis (M) and minor axis (m) of the best
fit ellipse, Barchiesi et al formulate the estimated volume as

VBarchiesi = Cf × 4
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where Cf is a proposed measure to account for surface irregularity. We believe
the proposed model is insufficiently expressive to be accurate: given the wide
variety of MP morphologies (e.g. fragment, fiber and bead), the assumption
that a best fit ellipse is appropriate is unfounded. Thus, predictions made by
the model cannot be effectively used to quantify the MP pollution or qualify
environmental effects of individual MPs.

2 Methodology

Our methodology consists of two main phases: classification and 3D reconstruc-
tion. To collect the data necessary for inference, we built a microscope with
an electronically actuated focus mechanism (Figure 1). We designed a custom
toothed translation screw to convert the rotary motion of the 12V stepper motor
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Fig. 1: Images taken during the development of the focus-actuation system

to linear motion of the objective lens. This component was created via resin 3D
printing. The motor is controlled by an Arduino UNO, running the power input
through a 12V relay. The total cost of our components is around 40 USD, which
is substantially lower than that of research grade microscopes with similar char-
acteristics. Considering available options, we found that similar research-grade
microscopes with comparable magnification levels and an HDMI camera typi-
cally cost around 2500 USD [1,12,17].

2.1 Segmentation

To accurately reconstruct of objects within the scenes, the objects must first
be identified. This is done with methodology proposed by Felzenszwalb et al.
in "Efficient Graph-Based Image Segmentation" (EGBIS) [8]. EGBIS represents
the image as a graph G = (V,E), where each node vi ∈ V represents a pixel and
each edge (vi, vj) ∈ E represents similarity between pixels vi and vj .

The benefits of this algorithm over alternatives (e.g. YOLO [19] and CNN-
based region proposal networks [20]) are twofold.

Fig. 2: Example images segmented with the EG-
BIS algorithm. The algorithm is clearly able to iden-
tify objects in the image, regardless of the irregular
structure (e.g. the fibrous structure in the bottom
right image)

EGBIS is significantly more
efficient than YOLO and
CNN-based region proposal
networks (RPN). The unpa-
rameterised segmentation al-
gorithm runs in O(mlogm)
time and runs in a fraction of
a second for the 640x480 im-
ages taken by the microscope
camera. YOLO and CNN-
based RPNs are significantly
less efficient in our applica-
tion: this is as the collection
of images is staggered, which
means optimisations of the
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algorithm for GPUs are not
used.

EGBIS is much more accurate than neural-network-based approaches. YOLO
[19] and CNN-based RPNs [20] are trained on data that do not contain mi-
croscopy images. This means that the models are often unable to identify ob-
jects in the scene, likely as colors and structures encountered will be unfamiliar.
The EGBIS algorithm does not take semantic information into account, and
is thus able to identify objects despite their irregular geometries. The uniform
background colour and distinct separation between adjacent particles further
improve the performance of the algorithm.

We perform segmentation on the model M = R(If , k). The function R(x, k)
denotes the EGBIS algorithm given the focus-stacked image If and parameter
k. k parameterises the scale of objects preferred within the final segmentation
(i.e. a large k will result in larger segmented objects and a smaller k will result
in smaller segmented objects). The segmentation mask M (as seen in Figure 2)
is defined as such: the entry Mi,j denotes the object that the pixel If (i, j) is a
part of. It therefore takes a value between 1 and n, where n is the number of
objects.

3 Classification

Fig. 3: Microplastic
images from the ASU
dataset

During the classification stage, our goal is to distin-
guish microplastics from a mixed sample containing
both microplastics and non-microplastics, and to ac-
curately classify the identified microplastics according
to their morphology. Due to the limited availability of
light-microscopy microplastic data, we must use few-
shot learning. For our purposes, we employ a proto-
typical network-based methodology [21]. As proposed
by Snell et al., we learn a mapping f(x) from a given
input image xi to a point ck ∈ R in embedding space.
We learn the parameters of f(x) by minimising the
loss function.

L =
∑

(xq,yq)∈Q

∥∥f(xq)− cyq

∥∥2 (2)

where (xq, yq) is an input-label pair within the query set (the images that we
aim to classify) and cyq

is the corresponding prototype for class yq.
We initialise our mapping f(x) with a pretrained deep residual network [11]

trained on the ImageNet dataset. We then convert the model to a mapping by
replacing the final classification layer with a 256-node dense layer. Therefore, the
output of the model will be the mapped point in embedding space f(x) ∈ R256.

We fine-tune the model on the ASU MP dataset [6] (Figure 3), images from
the IDR database [24]. To increase the size of the dataset we augment the data
by performing random blurring and flipping of the images. This is well motivated
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as the classification of a MP should be invariant to the focus and orientation of
the image.

3.1 3D Reconstruction

From classification, we identify the regions where a MP is present within the
image. With this information, we can then continue to construct a 3D model of
individual MPs. To achieve this, we employ the depth-from-focus method.

We attempted both stereo depth estimation and monocular depth estima-
tion but found that both methods were inadequate. For stereo depth estimation,
the restrictively small field of view of MPs makes recording images with sig-
nificant parallax difficult. Similarly, monocular depth estimation is speculative
when generating depth maps and is often unable to recover fine details of the
object.

Extracting depth information from depth-from-focus (DFF) is significantly
less popular than other means due to "low precision hardware" and "imprecise
mathematical methods" [25]. To make DFF an appropriate methodology for this
purpose, we fix both of these limitations.

On the hardware front, our implemented solution can perform precise changes
in magnification. Coupled with effective calibration, our hardware is far more ef-
fective than those used in previous implementations of DFF-based depth estima-
tion. On the software front, we employ state-of-the-art research on blur detection
to effectively extract fine details of the MPs. Specifically, we utilise Golestaneh
et al.’s methodology [9] for applying blur detection on the images captured by
the microscope. This is far more effective than using traditional methods (e.g.
Laplacian-based methodologies) as fine details are preserved.

We set up a camera with real coordinates C (taking the centre of the sample
as (0, 0, 0)) and take images with incrementing magnification and automatically
disqualify images with excessively high blurriness. We also record sensor position
s (the distance of the DSLR sensor from the objective lens) for each image.

For each of the images, we generate a focus map (Figure 4) F, where Fi,j

represents the focus of the pixel at (i, j). We aim to combine the focus maps
generated to obtain a depth map D for which the entry at Di,j denotes the
distance along the ray connecting the sample and the camera C.

Fig. 4: Example of generated focus maps of
the same object at different magnifications.

The first step of this process in-
volves aligning each of the generated
focus maps, such that the focus maps
can be overlaid to create a cohesive
depth map. This is done using the
SIFT methodology [16]. Suppose we
wish to align F1 (the focus map corre-
sponding to I1) to F2 (the focus map
corresponding to I2): we first gener-
ate two sets of keypoints (k1 and k2)
from images I1 and I2 using the SIFT
methodology.
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We then use a FLANN (Fast Li-
brary for Approximate Nearest Neighbors) [18] based matcher to find neighbors
in k2 for keypoints in k1. We can then estimate a homography matrix H which
best describes the mapping of the keypoints. By applying the homography ma-
trix H on F1, we can align depth map F2 to F2. In practice, this process is
highly accurate. This is as zooming and camera and movement are very slight,
making the nearest neighbor identification very accurate.

We then use this information to calculate the desired depth map D. Using
the thin-lens formula, we can trivially determine the depth of each point:

Di,j =
s∗f

s∗ − f
(3)

where f is the focal length of the camera and s∗ is the sensor position that
achieves maximal focus. We merge the points for different camera positions and
apply Delaunay triangulation [14] to create a mesh of the microplastic.

4 Results

Example meshes (Figure 5b) were generated from MPs (Figure 5c) found during
manual sample collection at the River Itchen. Negative data (i.e. microscopy im-
ages of non-MPs) included images sourced from the IDR database and manually
collected samples from the River Itchen.

(a) Generated focus maps of a microplastic (b) Generated mesh from a microplastic

(c) Source images of a microplastic (d) Contour generated from depth

5 Discussion

As stated previously, the data used for model fine-tuning consists of light mi-
croscopy images [6] of MPs of different morphologies (60 images of bead MPs,
120 images of fiber MPs and 84 images of fragment MPs) and a negative dataset
constructed from IDR [24] data. This data includes both images obtained from
performing data augmentation and images originally from the dataset. 5 random
IDR light microscopy datasets were selected to construct the negative dataset.
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Method Feature Dim Classify (%) Identify (%) FP (%) FN(%)

Baseline 128 53.4 35.7 33.9 30.4
Trained 128 62.3 40.6 26.5 32.9
Baseline 256 91.0 91.9 5.4 2.7
Trained 256 94.6 96.3 2.4 1.3
Baseline 512 87.4 89.8 5.7 5.5
Trained 512 93.2 90.1 6.3 3.6

Table 1: Performance of the classification model. FP and FN are abbreviations of false
positive and false negative rates for the identification of MPs. Feature Dim refers to
the output dimension of the feature extractor.

For every image in the dataset, the EGBIS algorithm was used to construct
bounding boxes for each object within the image which were then used to save
images that contain the negative object. We then randomly selected 100 images
such as to reduce class imbalance during training.

Within Table 1, "Baseline" refers to results obtained using the few-shot learn-
ing model with the pretrained feature extractor and "Trained" refers to results
obtained using the few-shot learning model after fine-tuning on the dataset.
Identification accuracy refers to the accuracy of the model in separating MPs
from non-MPs in unseen images. Within this testing paradigm, classifying a MP
as the wrong morphology would still be considered correctly classified instance.
Classification accuracy refers to the accuracy of identifying the morphology of
the MP in an unseen image. Negative images are not included during the eval-
uation of classification accuracy. Training of the model is done on 60% of the
dataset, evaluation on 10% and testing on 30%.

The classification model achieves highest accuracy (94.6% accuracy for MP
classification, 96.3% accuracy on identification) when using a feature extractor
with 256-dimensional output vectors. With 512-dimensional and 128-dimensional
feature vectors, the accuracy decreases. There is likely not enough data for the
feature extractor with 512-dimensional feature vectors to converge and the gen-
erated 128-dimensional feature vectors will not contain enough information to
allow for accurate classification.

For MP identification, False positive rates seem consistently higher than false
negative (Table 1): this is likely due to class imbalance within the dataset as well
as similar characteristics between non-MPs and MPs particles.

The mesh generated by the model accurately reconstructs features of the MP.
For example, the distinctive ridge of the MP is preserved, as well as the angular-
ity of its structure. However, through the Delaunay triangulation performed to
generate the mesh, some of the structural information is lost. Nevertheless, we
believe that the generated representation is significantly more accurate than that
of existing mathematical models. This is as our methodology is more expressive
than our models, as no restrictive assumptions about the MP are made.
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Additionally, we were unable to perform 3D reconstruction of bead and fibre
type MPs as we were unable to find any samples of bead and fibre MPs in the
Itchen River.

6 Conclusion

Our work presents a novel computer-vision based approach to the understud-
ied field of reconstructing models of MPs. Operating on low-cost hardware,
we adapted existing algorithms to effectively extract information from low-
resolution information. However, more work must be done to test reconstruction
for other MP morphologies, as well as calibrate generated models to experimen-
tally determined values. Additonally, we expect continued difficulty in verifying
the validity of the reconstructed models in futrue works: this is as retrieving the
ground truth structure data is a difficult and costly task. Collaboration with
reseachers from fields such as radiography will be necessary to collect ground
truth data for collected MPs.
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