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Abstract

Accurate estimates of salmon escapement—the number
of fish migrating upstream to spawn—are key data for con-
servation and fishery management. Existing methods for
salmon counting using high-resolution imaging sonar hard-
ware are non-invasive and compatible with computer vi-
sion processing. Prior work in this area has utilized ob-
ject detection and tracking based methods for automated
salmon counting. However, these techniques remain in-
accessible to many sonar deployment sites due to limited
compute and connectivity in the field. We propose an alter-
native lightweight computer vision method for fish count-
ing based on analyzing echograms—temporal representa-
tions that compress several hundred frames of imaging
sonar video into a single image. We predict upstream and
downstream counts within 200-frame time windows directly
from echograms using a ResNet-18 model, and propose a
set of domain-specific image augmentations and a weakly-
supervised training protocol to further improve results. We
achieve a count error of 23% on representative data from
the Kenai River in Alaska, demonstrating the feasibility of
our approach.

1. Introduction
Accurate salmon population monitoring enables data-driven
fishery management and conservation. In particular, fish-
ery managers and conservationists are interested in salmon
escapement: the abundance of migrating salmon returning
from the sea that successfully spawn. Several methods exist
for monitoring migrating salmon (see Sec. 2). Sonar-based
monitoring has recently grown in popularity due to its non-
invasive nature and ability to collect data at high temporal
resolution under a variety of conditions. However, sonar
cameras produce large amounts of data—in some cases over
30GB of data a day [1]—and reviewing this data is time-
intensive for technicians, with no existing alternative that
generalizes across sites.

Computer vision has the potential to more efficiently
and accurately analyze sonar video for escapement mon-
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itoring. Prior work has introduced automated approaches
based on object detection and multi-object tracking [5].
These approaches achieve counting errors of under 10%;
however, they rely upon processing each video frame inde-
pendently with deep networks (e.g. YOLOv5m with 21.2M
params [5]), making them currently unsuitable for deploy-
ment in locations with limited compute and connectivity.

In this paper, we explore an alternative approach to au-
tomated salmon counting in sonar video that harnesses a
temporal representation called an echogram. Echograms
compress a multi-beam sonar video into a 2D image (see
Fig. 1). The x-axis of an echogram represents time. At each
x-value, a column vector represents a compressed view of
an entire frame of video. In this column vector, the pixel
intensity at each y-value corresponds to the maximum in-
tensity across all sonar beams at the corresponding range.
If fish are present, this will result in a noticeable visual sig-
nature. Sonar technicians use these echogram visualizations
during data review, both to identify temporal regions of in-
terest and to cross-check challenging counts.

We propose and evaluate the feasibility of a method for
analyzing echograms with computer vision to directly pre-
dict fish counts, providing a low-compute alternative to ob-
ject detection and tracking pipelines. Our method takes as
input a 200px wide echogram image and predicts the num-
ber of fish moving upstream or downstream during the cor-
responding timeframe, thus requiring only a single forward
pass every 200 frames through a lightweight backbone (e.g.
a ResNet-18 with 11.7M params [3]) to compute counts.
We further propose a set of domain-specific image augmen-
tations as well as a weakly-supervised training protocol that
incorporates annotations generated ahead of time by an ob-
ject detector and tracker.

Our initial model achieves counting error rates of 23%
on a validation set that is in-distribution with respect to
the training set and 30.7% on an out-of-distribution test
set, nearly matching initial proofs of concept for much
more computationally expense tracking-by-detection ap-
proaches [7]. We perform quantitative and qualitative anal-
yses to identify challenges in echogram-based approaches
as well as promising areas for future work.



2. Related work
Salmon escapement monitoring. Several methods exist
for monitoring salmon escapement, including weirs, count-
ing towers, and various sonar hardware. We include a
broader overview of these methodologies in the supplemen-
tal material. In this paper we focus on a relatively new
generation of sonar hardware known as imaging sonar that
produce high-resolution videos using multi-beam acoustic
hardware. Imaging sonar can be accurately analyzed to
count and measure salmon by both human technicians [1]
as well as computer vision systems [5].
Computer vision for salmon monitoring. Existing com-
puter vision approaches to salmon counting utilize tracking-
by-detection to first perform object detection on individual
frames and then link together predicted bounding boxes into
trajectories [5, 8]. Once these tracks are determined, differ-
ent heuristics may be used to determine fish counts. While
such approaches produce accurate counts when the training
river and testing river are the same, they struggle on out-
of-distribution test data sourced from e.g. different rivers or
different environmental conditions than the training data [4–
6]. Another key challenge for real-world deployment of
these models is their compute requirements, as fish count-
ing technicians are often stationed in remote locations with
only consumer laptops; on such hardware, even efficient ob-
ject detection and tracking techniques like YOLO [9] and
SORT [2] are a severe processing bottleneck. Our method
aims to enable more efficient inference by bypassing frame-
by-frame video analysis through compressed temporal rep-
resentations called echograms.

3. Method
3.1. Echogram generation

We begin with sonar video files in the ARIS format [10].
Each file represents 10-20 minutes of continuous sonar
footage which may or may not contain fish. At each range
(radial distance from the sonar camera) a certain angular
span is sampled, outputting a pixel intensity corresponding
to the strength of the echo received.

To generate the echogram, we apply successive iterations
of background subtraction to each frame of the ARIS file,
as in Fig. 1. In each application of background subtraction,
after taking the mean frame across the ARIS file, only the
pixels of each frame exceeding a threshold value α above
the corresponding pixel of the mean frame are kept.

First we apply background subtraction to the raw frame
with a low threshold value α0. Then OpenCV’s Connected-
ComponentsWithStats function obtains all connected com-
ponents in the new image which are larger than a size
threshold scaled by range. Finally, we apply background
subtraction once more with a threshold value α1 within
these components and α2 outside these components such

that α0 < α1 < α2. The values of each threshold are tuned
by trial and error until a qualitatively acceptable echogram
is produced, and we use those same parameters for all data.

This version of the clip, with each frame cleaned of back-
ground noise, is used for echogram generation. Each frame
of shape (number of samples along range) × (number of
beams) is collapsed into a column of height (number of
samples along range), each pixel of the column correspond-
ing to the maximum intensity at that range of the various
beams. A second image channel stores the lateral posi-
tion of that maximum intensity point, normalized between 0
and 1. Concatenating these columns together gives the full
2D echogram, of shape (number of samples along range) ×
(number of frames in video).

3.2. Computer vision model

We train a computer vision model in the PyTorch Lightning
machine learning framework to predict left and right counts
for echogram images. We finetune a ResNet18 model pre-
trained on ImageNet with a final fully connected layer that
contains two outputs corresponding to left and right counts.
We use a ReLU activation function after the final layer
(since counts must be non-negative) and optimize for mean
squared error. We use an input size of 200px by 800px,
learning rate of 1e-5 using Adam optimization, batch size
of 256, and train for a maximum of 100 epochs on a single
NVIDIA A100 GPU with early stopping based on KL-val
(see Sec. 4.1) performance.

4. Dataset and metrics
4.1. Data collection and annotation

We generate echograms for the Caltech Fish Counting
dataset (CFC) from [5]. We use the default training and
validation sets, “KL-train” and “KL-val” from the left bank
of the Kenai River in Alaska, and we also test on one out-
of-distribution test set, “KR” from the Kenai right bank. In
total, this gives us 481 KL-train images, 66 KL-val images,
and 406 KR test images. We refer to the ground truth count
labels for CFC as strong labels in our experiments.

We also generate additional weak labels on a set of
previously-unlabeled ARIS files collected from the same
camera locations as the KL-train and KL-val sets. These
weak labels are generated by the public detector and tracker
pipeline released with CFC [5]. We label counts in the same
way as [5]: a fish whose trajectory start and end are on op-
posite sides of a vertical line drawn through the center of
the frame is counted as either anleft or right traveling fish,
based on the relative start and end points of the trajectory.
We ensure there is no overlap between the KL validation
set and the detector-tracker annotated training or validation
set. In total, we generated weak labels using this pipeline
for 33,437 images from the KL location.
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Figure 1. Clockwise: 1) a frame of the raw ARIS file; 2) the same frame after applying background subtraction with a minimum positive
threshold on each pixel intensity of α0 = 10 above the mean frame; 3) the same frame after applying connected components analysis,
applying background subtraction with a threshold of α2 = 127 outside the largest connected components and a threshold of α1 = 35
inside the largest connected components. 4) Selected frames from a time range in an ARIS file and 5) the same length of time displayed in
echogram view, where the color corresponds to the lateral position of the brightest pixel.

There is a large imbalance between leftward and right-
ward moving fish, since the data is collected to moni-
tor salmon migrating upstream. We orient all clips such
that right-moving fish travel upstream and left-moving fish
travel downstream, to make the model invariant to the phys-
ical upstream direction.

4.2. Metrics

To evaluate model performance we use the normalized
Mean Absolute Error (nMAE) as in prior work [5]:

nMAE =

∑N
i=0 Ei∑N
i=0 ẑi

(1)

where N is the number of clips, ẑi is the target number of
counts on the ith clip, and the error Ei is the sum of absolute
errors on left and right counts on the ith clip. We also report
nMAE for left and right counts separately.

5. Experiments
Our best-performing model achieves an overall nMAE on
KL-val of 23% and 30.7% on KR (Tab. 1).The count error
on downstream-moving fish is especially high (Tab. 1), due
partly to an extreme class imbalance between downstream-
and upstream-moving fish in all training sets. In addition,
the model systematically predicts lower counts than ground
truth in clips with large numbers of fish (Fig. 2), where sep-
arate tracks on an echogram may overlap and become diffi-
cult to distinguish.

These error rates are higher than state-of-the-art
detector-tracker pipelines for salmon counting: Kay et

al. [5] achieved 4.9% error on KL-val and 11.8% on KR us-
ing a YOLOv5m detector, and reduced these errors to 3.3%
error on KL-val and 3.7% error on KR using a more com-
plex input representation. However, our results are compa-
rable to initial results published by the same team [7] that
reported counting error rates of 19.3%, indicating the po-
tential to improve our results in future work.

Our experiments in Tab. 1, Tab. 2, and Tab. 3 demon-
strate that our model’s performance is improved by incor-
porating both weak and strong labels during training, tun-
ing the echogram generation parameters, and by applying
domain-specific data augmentations during training. We ab-
late these contributions next.

5.1. Training data

KL-val nMAE (%) ↓ KR nMAE (%) ↓
Training set Total Down Up Total Down Up

KL-train ([5], 481 imgs) 42.1 100.0 39.4 61.0 102.7 57.9
KL-weak (Ours, 33k imgs) 44.3 112.5 41.1 34.8 96 30.3
KL-train + KL-weak 23.0 37.5 22.3 30.7 96.0 25.8

Table 1. Dataset choice vs performance on KL-val and KR, split by down-
stream (“down”) and upstream (“up”) moving fish. Training with strong
and weak labels improves over both a small dataset of strong labels only,
and a large, diverse dataset of weak labels only.

We train the model on three different datasets: one com-
posed of weak labels only; one composed of strong labels
only; and one composed of a mixture of all weak labels
and strong labels. In Tab. 1, the drastic difference between
nMAE for the model trained only on strong labels vs the
mixture of weak and strong labels (about a 20% improve-



ment for KL-val and 30% improvement for KR) indicates
that training on a large, diverse dataset improves the model
despite the potential inaccuracies present in the weak labels.
The inclusion of strong labels, which make up less than 2%
of the total dataset size, also significantly improves model
performance compared to the model trained on weak labels
only, especially on the in-distribution test set (KL-val).

5.2. Echogram generation parameters

Echogram params nMAE (%) ↓

α0 α1 α2 size thresh KL-val

0 0 0 0 84.7
20 0 0 0 36.6
20 40 60 100 23.0
20 40 100 120 37.2

Table 2. Echogram generation parameters vs performance on KL-val and
KR for models trained and validated on a mixture of weak and strong la-
bels. The model performs best at some intermediate setting where a bal-
ance is achieved between filtering out background noise and preserving
information about fish tracks.

When generating the echogram slices used as input and
test data for the model, thresholds for initial background
subtraction, secondary background subtraction, and filter-
ing based on size can be tuned. Higher thresholds lead to
information loss but also produce a cleaner, less noisy sig-
nal for the model. Testing different sets of thresholds as in
Tab. 2 shows that an intermediate setting is ideal: the model
benefits from some filtering of noise but is negatively af-
fected by cutting background signal too aggressively.

5.3. Data augmentations

We explore various data augmentation strategies, informed
by the specifics of the echogram image domain, in Tab. 3.
Vertical flip. Flipping the entire image across the horizontal
axis improves nMAE for all model setups.
Naive horizontal flip. Regardless of the set of labels the
model is trained on, nMAE worsens when a horizontal
flip augmentation is applied, which flips the entire image.
In all training and validation sets, a class imbalance be-
tween upstream- and downstream-traveling fish exists: dur-
ing spawn season, many more fish are swimming upstream
than downstream. In KL-val, 175 fish are swimming up-
stream while only 8 are swimming downstream. In addition,
the upstream and downstream motion patterns of fish are
different due to the direction of the river current. This naive
horizontal flip augmentation thus both obscures the true dis-
tribution of upstream vs. downstream counts and does not
accurately capture the motion of the fish in the opposite di-
rection, suggesting that a different method is needed to ro-
bustly classify downstream-swimming fish.
Realistic horizontal flip. This transformation reflects the
image across the horizontal axis and then inverts the lateral

Figure 2. Mean and standard deviation of total predicted counts vs total
ground truth counts per clip on the KL-val and KR test sets. Size of the
dot corresponds to the number of images with the associated ground truth
count. The model systematically predicts lower counts than ground truth
for KR clips with large numbers of fish, where tracks of distinct fish may
overlap and become difficult to distinguish on the echogram.

position channel to match the original, pre-reflection direc-
tion of fish motion. This improves nMAE across all model
setups but does not improve the left-right class imbalance.
Superposition. Two echograms are superposed, displaying
at each point the intensity and color of the brightest pixel;
the target counts are added together. This augmentation has
mixed effects on performance, modestly improving training
on weak labels while worsening training on strong labels.

Data augmentations Train set

V. flip H. flip Superpos. Realistic h. flip KL-train KL-weak

48.1 64.5
• 43.2 49.2
• • 111.5 53.6
• • • 129 49.7
• • • 74.3 37.2
• • 39.3 44.3

Table 3. KL-val nMAE using either KL-train or KL-weak and ablating
data augmentations, using cleanest echogram generation settings. A naive
horizontal flip augmentation worsens the performance of the model trained
on either dataset, while vertical flip and our domain-specific realistic hori-
zontal flip improve results.

6. Conclusions
We introduce a new method for salmon population mon-
itoring based on an echogram, a 2D representation of an
entire sonar video clip, that is more computationally ef-
ficient than existing methods for determining fish counts
which are applied to individual frames of a sonar video.
Our initial results are promising: a lightweight ResNet-
18 model achieves significant reductions in nMAE which
bring us to count errors comparable to proofs of concept of
more expensive models, through appropriate dataset selec-
tion, echogram generation, and data augmentation.

Future evaluations and iterations on this model should
address the class imbalance between upstream- and
downstream-moving fish, develop a larger and more diverse
validation set, and fine-tune the echogram generation and
data augmentation procedures.
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