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Abstract. In this paper, we present WildlifeDatasets – an open-source
toolkit intended primarily for ecologists and computer-vision / machine-
learning researchers. The WildlifeDatasets is written in Python, allows
straightforward access to publicly available wildlife datasets, and pro-
vides a wide variety of methods for dataset pre-processing, performance
analysis, and model fine-tuning. We showcase the toolkit in various sce-
narios and baseline experiments, including, to the best of our knowledge,
the most comprehensive experimental comparison of datasets and meth-
ods for wildlife re-identification, including both local descriptors and deep
learning approaches. Furthermore, we provide the first-ever foundation
model for individual re-identification within a wide range of species –
MegaDescriptor – that provides state-of-the-art performance on animal
re-identification datasets and outperforms other pre-trained models such
as CLIP and DINOv2 by a significant margin. To make the model avail-
able to the general public and to allow easy integration with any existing
wildlife monitoring applications, we provide multiple MegaDescriptor fla-
vors (i.e., Small, Medium, and Large) through the HuggingFace hub.

1 Introduction

Animal re-identification is essential for studying different aspects of wildlife,
like population monitoring, movements, behavioral studies, and wildlife man-
agement [39, 45, 50]. While the precise definition and approaches to animal re-
identification may vary in the literature, the objective remains consistent. The
main goal is to accurately and efficiently recognize individual animals within one
species based on their unique characteristics, e.g., markings, patterns, or other
distinctive features.

Automatizing the identification and tracking of individual animals enables
the collection of precise and extensive data on population dynamics, migra-
tion patterns, habitat usage, and behavior, facilitating researchers in monitoring
movements, evaluating population sizes, and observing demographic shifts. This
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MegaDescriptor DINOv2

Fig. 1: Latent space separability of MegaDescriptor. Embedding visualization
(t-sne) of unseen individual animals (identity-wise) for the proposed MegaDescriptor
and DINOv2. Colors represent different datasets (i.e., species).

invaluable information contributes to a deeper comprehension of species dy-
namics, identifying biodiversity threats, and developing conservation strategies
grounded in evidence.

Similarly, the increasing sizes of the collected data and the increasing demand
for manual (i.e., time-consuming) processing of the data highlighted the need for
automated methods to reduce labor-intensive human supervision in individual
animal identification. As a result, a large number of automatic re-identification
datasets and methods have been developed, covering several animal groups like
primates [23, 54], carnivores [18, 31, 48], reptiles [4, 21], whales [1, 2, 13], and
mammals [3, 47,57].

However, there is a lack of standardization in algorithmic procedures, eval-
uation metrics, and dataset utilization across the literature. This hampers the
comparability and reproducibility of results, hindering the progress of the field.
It is, therefore, essential to categorize and re-evaluate general re-identification
approaches, connect them to real-world scenarios, and provide recommendations
for appropriate algorithmic setups in specific contexts. By quantitatively assess-
ing the approaches employed in various studies, we aim to identify trends and
provide insights into the most effective techniques for different scenarios. This
analysis will aid researchers and practitioners in selecting suitable algorithms
for their specific re-identification needs, ultimately advancing the field of animal
re-identification and its applications in wildlife conservation and research.

To address these issues, we have developed an open-source toolkit – Wildlife-
Datasets – intended primarily for ecologists and computer-vision / machine-
learning researchers. In this paper, besides the short description of the main
features of our tool, (i) we list all publicly available wildlife re-identification
datasets, (ii) perform the largest experimental comparison of datasets and wildlife
re-identification methods, (iii) describe a foundation model – MegaDescriptor –
based on different Swin architectures and trained on a newly comprised dataset,
and (iv) provide a variety of pre-trained models on a HuggingFace hub.

https://github.com/WildlifeDatasets/wildlife-datasets
https://github.com/WildlifeDatasets/wildlife-datasets
https://huggingface.co/BVRA
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2 Related work

Similarly, as in other fields, the development of methods and datasets for auto-
mated animal re-identification has been influenced by the progress in machine
learning. Currently, many studies exist, although the differences in terms of
their approach, prediction output, and evaluation methodologies result in sev-
eral drawbacks.

Firstly, methods are usually inspired by trends in machine learning rather
than being motivated by real-world re-identification scenarios. A prominent ex-
ample is performing classification tasks on a closed-set, which is typical for
benchmarking in deep learning but is, in general, not realistic in ecology, as new
individuals are constantly being recruited to populations. Second, many studies
focus on a single dataset and develop species-specific methods evaluated on the
given dataset rather than on a family of datasets [6, 10, 20, 25, 31, 52], making
reproducibility, transferability, and generalization challenging. Third, datasets
are poorly curated and usually include unwanted training-to-test data leakage,
which leads to inflated performance expectations.

All this leads to the repetition of poor practices both in dataset curation
and method design. As such, much of the current research suffers from a lack
of unification, which, we argue, constitutes an obstacle to further development,
evaluation, and applications to real-world situations.

2.1 Tools and methods

There are three primary approaches commonly used for wildlife re-identification
– (i) local descriptors [9, 21, 43], (ii) deep descriptors [12, 16, 31, 34, 49], and (iii)
species-specific methods [6, 10,25,29,52].

Local-feature-based methods find unique keypoints and extract their local
descriptors for matching. The matching is usually done on a database of known
identities, i.e., for each given image sample, an identity with the highest number
of descriptor matches is retrieved. The most significant benefit of these methods
is their plug-and-play nature, without any need for fine-tuning, which makes
them comparable in a zero-shot setting to large foundation models, such as
CLIP [42] or DINOv2 [37], etc.

Even though approaches based on SIFT, SURF, or ORB descriptors ex-
hibit limitations in scaling efficiently to larger datasets and their performance,
all available software products, e.g., WildID [11], HotSpotter [15], and I3S, are
based on local-feature-based methods. Naturally, even with such limitations,
those systems are popular among ecological researchers without a comprehen-
sive technical background and find a wide range of applications, most likely due
to their intuitive graphical user interfaces (GUIs).

Deep feature-based approaches are based on vector representation of the
image learned through optimizing a deep neural network. Similarly, as in local
feature-based methods, the resulting deep embedding vector (usually 1024 or
2048d) is matched with an identity database.

https://github.com/daniel-brenot/I3S-Interactive-Individual-Identification-System-Desktop
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Applying deep learning to wildlife re-identification bears similarities with hu-
man or vehicle re-identification. Therefore, similar methods can be easily repur-
posed. However, it is important to note that deep learning requires fine-tuning
models on the specific target domain, i.e., species, which makes the model’s
performance dependent on a species it was fine-tuned for. Another approach
is to use publicly available large-scale, foundational models pre-trained on large
datasets (e.g., CLIP [42] and DINOv2 [37]). These models are primarily designed
for general computer vision tasks. Therefore, they are not adapted nor tested
for the nuances of wildlife re-identification, which heavily relies on fine-grained
features.

Species-specific methods are tailored to an individual species or groups of
closely related species, particularly those with visually distinct patterns. These
methods typically focus on visual characteristics unique to the target species,
restricting their applicability beyond the species they were developed for. More-
over, they often entail substantial manual preprocessing steps, such as extracting
patches from regions of interest or accurately aligning compared images. For in-
stance, one such approach involves employing Chamfer distance to measure the
distance between greyscale patterns in polar bear whiskers [6]. Other examples
include computing correlation between aligned patches derived from cheetah
spots [29] or similarity between two images based on the count of matching
pixels within newt patterns [20].

3 The WildlifeDatasets toolkit

One of the current challenges for the advancement of wildlife re-identification
methods is the fact that datasets are scattered across the literature and that
adopted settings and developed algorithms heavily focus on the species of inter-
est. In order to facilitate the development and testing of re-identification meth-
ods across multiple species in scale and evaluate them in a standardized way, we
have developed the Wildlife Datasets toolkit consisting of two Python libraries
– WildlifeDatasets and WildlifeTools. Both libraries are documented in a user-
friendly way; therefore, it is accessible to both animal ecologists and computer
vision experts. Users just have to provide the data and select the algorithm. Ev-
erything else can be done using the toolkit: extracting and loading data, dataset
splitting, identity matching, evaluation, and performance comparisons. Experi-
ments can be done over one or multiple datasets fitting into any used specified
category, e.g., size, domain, species, and capturing conditions. Below, we briefly
describe the core features and use cases of both libraries.

3.1 All publicly available wildlife datasets at hand

The first core feature of the WildlifeDatasets toolkit allows downloading, ex-
tracting, and pre-processing all 31 publicly available wildlife datasets6 (refer to
Table 1) in a unified format using just a few lines of Python code. Additionally,
6 Based on our research at the end of September 2023.

https://github.com/WildlifeDatasets/wildlife-datasets
https://github.com/WildlifeDatasets/wildlife-tools
https://wildlifedatasets.github.io/wildlife-datasets
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users can quickly overview and compare images of the different datasets and their
associated metadata, e.g., image samples, number of identities, timestamp infor-
mation, presence of segmentation masks/bounding boxes, and general statistics
about the datasets. This feature decreases the time necessary for data gather-
ing and pre-processing tremendously. Recognizing the continuous development
of the field, we also provide user-friendly options for adding new datasets.
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AAUZebraFishID [12] 2020 6672 6 ✗ ✗ ✗ ✗

AerialCattle2017 [8] 2017 46340 23 ✗ ✗ ✓ ✗

ATRW [31] 2019 5415 182 ✗ ✗ ✓ ✗

BelugaID [3] 2022 5902 788 ✓ ✓ ✗ ✗

BirdIndividualID [22] 2019 51934 50 ✗ ✗ ✗ ✓

CTai [23] 2016 4662 71 ✗ ✓ ✗ ✗

CZoo [23] 2016 2109 24 ✗ ✗ ✗ ✗

Cows2021 [24] 2021 8670 181 ✓ ✗ ✓ ✗

Drosophila [44] 2018 ∼2.6M 60 ✗ ✗ ✓ ✗

FriesianCattle2015 [9] 2016 377 40 ✗ ✗ ✓ ✗

FriesianCattle2017 [8] 2017 940 89 ✗ ✗ ✓ ✗

GiraffeZebraID [40] 2017 6925 2056 ✓ ✓ ✓ ✓

Giraffes [34] 2021 1393 178 ✗ ✓ ✓ ✗

HappyWhale [13] 2022 51033 15587 ✗ ✓ ✓ ✗

HumpbackWhaleID [2] 2019 15697 5004 ✗ ✓ ✓ ✗

HyenaID2022 [48] 2022 3129 256 ✗ ✓ ✓ ✗

IPanda50 [51] 2021 6874 50 ✗ ✗ ✓ ✗

LeopardID2022 [48] 2022 6806 430 ✗ ✓ ✓ ✗

LionData [18] 2020 750 94 ✗ ✓ ✓ ✗

MacaqueFaces [54] 2018 6280 34 ✓ ✗ ✗ ✗

NDD20 [47] 2020 2657 82 ✗ ✗ ✓ ✗

NOAARightWhale [1] 2015 4544 447 ✗ ✓ ✗ ✗

NyalaData [18] 2020 1942 237 ✗ ✓ ✓ ✗

OpenCows2020 [7] 2020 4736 46 ✗ ✗ ✓ ✗

SealID [36] 2022 2080 57 ✗ ✓ ✓ ✗

SeaTurtleID [38] 2022 7774 400 ✓ ✓ ✓ ✗

SeaTurtleID2022 [5] 2024 8729 438 ✓ ✓ ✓ ✗

SMALST [57] 2019 12850 10 ✗ ✗ ✓ ✗

StripeSpotter [30] 2011 820 45 ✗ ✓ ✓ ✗

WhaleSharkID [27] 2020 7693 543 ✓ ✓ ✓ ✗

ZindiTurtleRecall [4] 2022 12803 2265 ✗ ✓ ✓ ✗

Table 1: Publicly available animal re-identification datasets. We list all
datasets for animal re-identification and their relevant statistics, e.g., number of images,
identities, etc. All listed datasets are available for download in the WildlifeDatasets
toolkit.
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3.2 Implementation of advanced dataset spliting

Apart from the datasets at hand, the toolkit has built-in implementations for
all dataset training/validation/test splits corresponding to the different settings,
including (i) closed-set with the same identities in training and testing sets,
(ii) open-set with a fraction of newly introduced identities in testing, and (iii)
disjoint-set with different identities in training and testing. In cases where a
dataset contains timestamps, we provide so-called time-aware splits where images
from the same period are all in either the training or the test set. This results in a
more ecologically realistic split where new factors, e.g., individuals and locations,
are encountered in the future [38].

3.3 Accessible feature extraction and matching

Apart from the datasets, the WildlifeDatasets toolkit provides the ability to
access multiple feature extraction and matching algorithms easily and to per-
form re-identification on the spot. We provide a variety of local descriptors,
pre-trained CNN- and transformer-based descriptors, and different flavors of the
newly proposed foundation model – MegaDescriptor. Below, we provide a short
description of all available methods and models.

Local descriptors: Due to extensive utilization among ecologists and state-of-
the-art performance in animal re-identification, we have included selected local
feature-based descriptors as a baseline solution available for deployment and a
direct comparison with other approaches.

Within the toolkit, we have integrated our implementations of standard SIFT
and deep learning-based Superpoint descriptors. Besides, we have implemented a
matching algorithm that uses local descriptors using contemporary insights and
knowledge. Leveraging GPU implementation (FAISS [28]) for nearest neighbor
search, we have eliminated the necessity for using approximate neighbors. This
alleviates the time-complexity concerns raised by authors of the Hotspotter tool.

Pre-trained deep-descriptors: Besides local descriptors, the toolkit allows to
load any pre-trained model available on the HuggingFace hub and to perform
feature extraction over any re-identification datasets. We have accomplished this
by integrating the Timm library [53], which includes state-of-the-art CNN- and
transformer-based architectures, e.g., ConvNeXt [33], ResNext [55], ViT [19],
and Swin [32]. This integration enables both the feature extraction and the fine-
tuning of models on the wildlife re-identification datasets.

MegaDescriptor: Furthermore, we provide the first-ever foundation model for
individual re-identification within a wide range of species – MegaDescriptor –
that provides state-of-the-art performance on all datasets and outperforms other
pre-trained models such as CLIP and DINOv2 by a significant margin. In order to
provide the models to the general public and to allow easy integration with any
existing wildlife monitoring applications, we provide multiple MegaDescriptor
flavors, e.g., Small, Medium, and Large.
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Matching: Next, we provide a user-friendly high-level API for matching query
and reference sets, i.e., to compute pairwise similarity. Once the matching API
is initialized with the identity database, one can simply feed it with images, and
the matching API will return the most visually similar identity and appropriate
image.

3.4 Community-driven extension

Our toolkit is designed to be easily extendable, both in terms of functionality and
datasets, and we welcome contributions from the community. In particular, we
encourage researchers to contribute their datasets and methods to be included
in the WildlifeDataset. The datasets could be used for the development of new
methods and will become part of future versions of the MegaDescriptor, enabling
its expansion and improvement. This collaborative approach aims to further
drive progress in the application of machine learning in ecology.

4 MegaDescriptor – Methodology

Wildlife re-identification is usually formulated as a closed-set classification prob-
lem, where the task is to assign identities from a predetermined set of known
identities to given unseen images. Our setting draws inspiration from real-life ap-
plications, where animal ecologists compare a reference image set (i.e., a database
of known identities) with a query image set (i.e., newly acquired images) to de-
termine the identities of the individuals in new images. In the search for the
best suitable methods for the MegaDescriptor, we follow up on existing liter-
ature [16, 31, 34, 41] and focus on local descriptors and metric Learning. We
evaluate all the ablation studies over 29 datasets provided through the Wildlife-
Dataset toolkit.

4.1 Local features approaches

Drawing inspiration from the success of local descriptors in existing wildlife re-
identification tools [21, 41], we include the SIFT and Superpoint descriptors in
our evaluation. The matching process includes the following steps: (i) we extract
keypoints and their corresponding descriptors from all images in reference and
query sets, (ii) we compute the descriptors distance between all possible pairs
of reference and query images, (iii) we employ a ratio test with a threshold to
eliminate potentially false matches, with the optimal threshold values determined
by matching performance on the reference set, and (iv) we determine the identity
based on the absolute number of correspondences, predicting the identity with
highest number from reference set.

4.2 Metric learning approaches

Following the recent progress in human and vehicle re-id [14,35,56], we select two
metric learning methods for our ablation studies – Arcface [17] and Triplet loss
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Fig. 2: Ablation of the backbone architecture and metric learning method.
We compare two backbones – Swin-B and EfficientNet-B3 – and Triplet / ArcFace
methods on all available animal re-id datasets. In most cases, the Swin-B with ArcFace
maintains competitive or better performance than EfficientNet-B3 and Triplet.

[46] – which both learn a representation function that maps objects into a deep
embedding space. The distance in the embedded space should depend on visual
similarity between all identities, i.e., samples of the same individual are close,
and different identities are far away. CNN- or transformer-based architectures
are usually used as feature extractors.

The Triplet loss [26,46] involves training the model using triplets (xa, xp, xn),
where the anchor xa shares the same label as the positive xp, but a different la-
bel from the negative xn. The loss learns embedding where the distance between
xa and xp is small while distance between xa and xn is large such that the for-
mer pair should be distant to latter by at least a margin m. Learning can be
further improved by a suitable triplet selection strategy, which we consider as
a hyperparameter. We consider ’all’ to include all valid triplets in batch, ’hard’
for triplets where xn is closer to the xa than the xp and ’semi’ to select triplets
where xn is further from the xa than the xp.

The ArcFace loss [17] enhances the standard softmax loss by introducing
an angular margin m to improve the discriminative capabilities of the learned
embeddings. The embeddings are both normalized and scaled, which places them
on a hypersphere with a radius of s. Value of scale s is selected as hyperparam-
eter.

Matching strategy: In the context of our extensive experimental scope, we
adopt a simplified approach to determine the identity of query (i.e., test) im-
ages, relying solely on the closest match within the reference set. To frame this
in machine learning terminology, we essentially create a 1-nearest-neighbor clas-
sifier within a deep-embedding space using cosine similarity.

Training strategy: While training models, we use all 29 publicly available
datasets provided through the WildlifeDataset toolkit. All datasets were split in
an 80/20% ratio for reference and query sets, respectively, while preserving the
closed set setting, i.e., all identities in the query set are available in the reference
set. Models were optimized using the SGD optimizer with momentum (0.9) for
100 epochs using the cosine annealing learning rate schedule and mini-batch of
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128.

Hyperparameter tunning: The performance of the metric learning approaches
is usually highly dependent on training data and optimization hyperparame-
ters [35]. Therefore, we perform an exhaustive hyperparameters search to de-
termine optimal hyperparameters with sustainable performance in all potential
scenarios and datasets for both methods. Besides, we compare two backbone ar-
chitectures – EfficientNet-B3 and Swin-B – with a comparable number of param-
eters. We select EfficientNet-B3 as a representative of traditional convolutional-
based and Swin-B as a novel transformer-based architecture.

For each architecture type and metric learning approach, we run a grid search
over selected hyperparameters and all the datasets. We consider 72 different set-
tings for each dataset, yielding 2088 training runs. We use the same optimization
strategy as described above. All relevant hyperparameters and their appropriate
values are listed in Table 2.

Backbone {Swin− B, EfficientNet− B3}
Learning rate {0.01, 0.001}

ArcFace margin {0.25, 0.5, 0.75}
ArcFace scale {32, 64, 128}

Triplet mining {all, semi, hard}
Triplet margin {0.1, 0.2, 0.3}

Table 2: Grid-search setup. Selected hyperparameters and their appropriate values
for ArcFace and Triplet approaches.

5 Ablation studies

This section presents a set of ablation studies to empirically validate the de-
sign choices related to model distillation (i.e., selecting methods, architectures,
and appropriate hyperparameters) while constructing the MegaDescriptor fea-
ture extractor, i.e., first-ever foundation model for animal re-identification. Fur-
thermore, we provide both qualitative and quantitative performance evaluation
comparing the newly proposed MegaDescriptor in a zero-shot setting with other
methods, including SIFT, Superpoint, ImageNet, CLIP, and DINOv2.

5.1 Loss and backbone components

To determine the optimal metric learning loss function and backbone architec-
ture configuration, we conducted an ablation study, comparing the performance
(median accuracy) of ArcFace and Triplet loss with either a transformer- (Swin-
B) or CNN-based backbone (EfficientNet-B3) on all available re-identification
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datasets. In most cases, the Swin-B with ArcFace combination maintains com-
petitive or better performance than other variants. Overall, ArcFace and transformer-
based backbone (Swin-B) performed better than Triplet and CNN backbone
(EfficientNet-B3). First quantiles and top whiskers indicate that Triplet loss un-
derperforms compared to ArcFace even with correctly set hyperparameters. The
full comparison in the form of a box plot is provided in Figure 2.

5.2 Hyperparameter tunning

In order to overcome the performance sensitivity of metric learning approaches
regarding hyperparameter selection and to select the generally optimal parame-
ters, we have performed a comprehensive grid search strategy.

Following the results from the previous ablation, we evaluate how various
hyperparameter settings affect the performance of a Swin-B backbone optimized
with Arcface and Triplet losses. In the case of ArcFace, the best setting (i.e.,
lr = 0.001, m = 0.5, and s = 64) achieved a median performance of 87.3% with
25% and 75% quantiles of 49.2% and 96.4%, respectively. Interestingly, three
settings underperformed by a significant margin, most likely due to unexpected
divergence in the training7. The worst settings achieved a mean accuracy of 6.4%,
6.1%, and 4.0%. Compared to ArcFace, Triplet loss configurations showed higher
performance on both 25% and 75% quantiles, indicating significant performance
variability.

The outcomes of the study are visualized in Figure 3 as a boxplot, where
each box consists of 29 values.

5.3 Metric learning vs. Local features

The results conducted over 29 datasets suggested that both metric learning ap-
proaches (Triplet and ArcFace) outperformed the local-feature-based methods
on most datasets by a significant margin. The comparison of local-feature-based
methods (SIFT and Superpoint) revealed that Superpoints are a better fit for
animal re-identification, even though they are rarely used over SIFT descriptors
in the literature. A detailed comparison is provided in Table 3. Note that the
Giraffes dataset was labeled using local descriptors; hence, the performance is
inflated and better than for metric learning.

The same experiment revealed that several datasets, e.g., AerialCattle2017,
SMALST, MacaqueFaces, Giraffes, and AAUZebraFish, are solved or close to
that point and should be omitted from development and benchmarking.

6 Performance evaluation

Insights from our ablation studies led to the creation of MegaDescriptors – the
Swin-transformer-based models optimized with ArcFace loss and optimal hyper-
parameters using all publicly available animal re-id datasets.
7 These three settings were excluded from further evaluation and visualization for a

more fair comparison.
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Fig. 3: Ablation of hyperparameters search. We display performance for all set-
tings as a boxplot combining accuracy from all 29 datasets. ArcFace (Top) and Triplet
loss (Bottom).

In order to verify the expected outcomes, we perform a similar comparison
as in metric learning vs. Local features ablation, and we compare the MegaDe-
scriptor with CLIP (ViT-L/p14-336), ImageNet-1k (Swin-B/p4-w7-224), and DI-
NOv2 (ViT-L/p14-518) pre-trained models. The proposed MegaDescriptor with
Swin-L/p4-w12-384 backbone performs consistently on all datasets and outper-
forms all methods in on all 29 datasets. Notably, the state-of-the-art foundation
model for almost any vision task – DINOv2 – with a much higher input size
(518× 518) and larger backbone performs poorly in animal re-identification.

6.1 Seen and unseen domain performance

This section illustrates how the proposed MegaDescriptor can effectively leverage
features learned from different datasets and its ability to generalize beyond the
datasets it was initially fine-tuned on. By performing this experiment, we try
to mimic how the MegaDescriptor will perform on Seen (known) and Unseen
Domains (unknown).

We evaluate the generalization capabilities using the MegaDescriptor-B and
all available datasets from one domain (cattle), e.g., AerialCattle2017, Friesian-
Cattle2015, FriesianCattle2017, Cows2021, and OpenCows2020. The first muta-



12 V. Cermak et al.

Dataset SIFT Superpoint Triplet ArcFace

AAUZebraFish 65.09 25.09 99.40 98.95
ATRW 89.30 92.74 93.26 95.63
AerialCattle2017 98.96 99.06 100.0 100.0
BelugaID 1.10 0.02 19.85 15.74
BirdIndividualID 48.96 48.71 96.45 96.00
CTai 33.87 29.58 77.44 87.14
CZoo 67.61 83.92 96.34 95.75
Cows2021 58.82 75.89 91.90 90.14
FriesianCattle2015 56.25 55.00 61.25 57.50
FriesianCattle2017 85.86 86.87 96.97 94.95
GiraffeZebraID 74.45 73.85 58.85 66.07
Giraffes 97.01 99.25 91.42 88.69
HappyWhale 0.38 0.42 9.73 17.03
HumpbackWhaleID 11.65 11.82 38.78 44.75
HyenaID2022 39.84 46.67 71.03 70.32
IPanda50 35.12 47.35 75.71 79.71
LeopardID2022 72.71 75.08 65.56 69.02
LionData 31.61 5.16 12.90 8.39
MacaqueFaces 75.72 75.08 98.69 98.73
NDD20 17.14 29.01 35.88 55.18
NOAARightWhale 6.53 15.31 2.68 18.74
NyalaData 10.75 18.46 19.16 19.85
OpenCows2020 72.76 86.38 99.31 99.37
SMALST 92.22 98.37 100.0 100.0
SeaTurtleIDHeads 55.23 80.58 80.22 85.32
SealID 31.41 62.11 50.84 48.68
StripeSpotter 70.12 94.51 59.45 76.83
WhaleSharkID 4.29 22.90 13.88 43.10
ZindiTurtleRecall 17.91 25.73 27.40 32.74

Table 3: Ablation of animal re-id methods. We compare two local-feature (SIFT
and Superpoint) methods with two metric learning approaches (Triplet and ArcFace).
Metric learning approaches outperformed the local-feature methods on most datasets.
ArcFace provides more consistent performance. For metric learning, we list the median
from the previous ablation.

tion (Same Dataset) was trained on training data from all datasets and evaluated
on test data. The second mutation (Seen Domain) used just the part of the do-
main for training; OpenCows2020 and Cows2021 datasets were excluded. The
third mutation (Unseen Domain) excludes all the cattle datasets from training.

The MegaDescriptor-B, compared with a CLIP and DINOv2, yields signifi-
cantly better or competitive performance (see Figure 4). This can be attributed
to the capacity of MegaDescriptor to exploit not just cattle-specific features.
Upon excluding two cattle datasets (OpenCows2020 and Cows2021) from the
training set, the MegaDescriptor’s performance on those two datasets slightly
decreases but still performs significantly better than DINOv2. The MegaDescrip-
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Dataset ImageNet CLIP DINOv2 MegaDesc.

AAUZebraFish 94.38 94.91 96.93 99.93
ATRW 88.37 86.88 88.47 94.33
AerialCattle2017 100.0 99.99 100.0 100.0
BelugaID 19.58 11.20 14.64 66.48
BirdIndividualID 63.11 52.75 74.90 97.82
CTai 60.99 50.38 68.70 91.10
CZoo 78.49 58.87 87.00 99.05
Cows2021 57.84 41.06 58.19 99.54
FriesianCattle2015 55.00 53.75 55.00 55.00
FriesianCattle2017 83.84 79.29 80.30 96.46
GiraffeZebraID 21.89 32.47 37.99 83.17
Giraffes 59.70 42.16 60.82 91.04
HappyWhale 14.25 15.30 13.26 34.30
HumpbackWhaleID 7.32 3.23 6.44 77.81
HyenaID2022 46.83 45.71 49.52 78.41
IPanda50 72.51 57.60 62.84 86.91
LeopardID2022 61.13 59.94 57.50 75.58
LionData 20.65 5.16 12.90 25.16
MacaqueFaces 78.58 64.17 91.56 99.04
NDD20 43.13 46.70 37.85 67.42
NOAARightWhale 28.37 28.27 24.84 40.26
NyalaData 10.28 10.51 14.72 36.45
OpenCows2020 92.29 82.26 90.18 100.0
SMALST 91.25 83.04 94.63 100.0
SeaTurtleIDHeads 43.84 33.57 46.08 91.18
SealID 41.73 34.05 29.26 78.66
StripeSpotter 73.17 66.46 82.93 98.17
WhaleSharkID 28.26 26.37 22.02 62.02
ZindiTurtleRecall 15.61 12.26 14.83 74.40

Table 4: Animal re-identification performance. We compare the MegaDescriptor-
L (Swin-L/p4-w12-384) among available pre-trained models, e.g., ImageNet-1k (Swin-
B/p4-w7-224), CLIP (ViT-L/p14-336), and DINOv2 (ViT-L/p14-518). The proposed
MegaDescriptor-L provides consistent performance on all datasets and outperforms all
methods on all 29 datasets.

tor retains reasonable performance on the cattle datasets even when removing
cattle images from training. We attribute this to learning general fine-grained
features, which is essential for all the re-identification in any animal datasets, and
subsequently transferring this knowledge to the re-identification of the cattle.

7 Conclusion

We have introduced the WildlifeDatasets toolkit, an open-source, user-friendly
library that provides (i) convenient access and manipulation of all publicly avail-
able wildlife datasets for individual re-identification, (ii) access to a variety of
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Fig. 4: Seen domain and un-seen domain performance. We compare the per-
formance of a MegaDescriptor-B (Swin-B/p4-w7-224), CLIP (ViT-L/p14-336) and
DINOv2 (ViT-L/p14-518) on (i) Same Dataset : all datasets were used for fine-tuning,
(ii) Seen Domain: Cows 2021 and OpenCows2020 were not used for fine-tuning, and
(iii) Unseen Domain: no datasets were used for fine-tuning.
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Fig. 5: Pre-trained models performance evaluation. We compare DINOv2 (ViT-
L/p14-518), CLIP (ViT-L/p14-336), and MegaDescriptor-L (Swin-L/p4-w12-384) on
29 selected datasets.

state-of-the-art models for animal re-identification, and (iii) simple API that
allows inference and matching over new datasets. Besides, we have provided
the most comprehensive experimental comparison of these datasets and essen-
tial methods in wildlife re-identification using local descriptors and deep learn-
ing approaches. Using insights from our ablation studies led to the creation of
a MegaDescriptor, the first-ever foundation model for animal re-identification,
which delivers state-of-the-art performance on a wide range of species. We antic-
ipate that this toolkit will be widely used by both computer vision scientists and
ecologists interested in wildlife re-identification and will significantly facilitate
progress in this field.



WildlifeDatasets: An open-source toolkit for animal re-identification 15

References

1. Right whale recognition (2015), https://www.kaggle.com/c/noaa-right-whale-
recognition 2, 5

2. Humpback whale identification (2019), https://www.kaggle.com/competitions/
humpback-whale-identification 2, 5

3. Beluga ID 2022 (2022), https://lila.science/datasets/beluga-id-2022 2, 5
4. Turtle recall: Conservation challenge (2022), https : / / zindi . africa /

competitions/turtle-recall-conservation-challenge 2, 5
5. Adam, L., Čermák, V., Papafitsoros, K., Picek, L.: SeaTurtleID2022: A long-span

dataset for reliable sea turtle re-identification. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (2024) 5

6. Anderson, C.J., Da Vitoria Lobo, N., Roth, J.D., Waterman, J.M.: Computer-
aided photo-identification system with an application to polar bears based on
whisker spot patterns. Journal of Mammalogy 91(6), 1350–1359 (2010), https:
//academic.oup.com/jmammal/article/91/6/1350/888329 3, 4

7. Andrew, W., Gao, J., Mullan, S., Campbell, N., Dowsey, A.W., Burghardt, T.:
Visual identification of individual holstein-friesian cattle via deep metric learn-
ing. Computers and Electronics in Agriculture 185, 106133 (2021), https://www.
sciencedirect.com/science/article/pii/S0168169921001514 5

8. Andrew, W., Greatwood, C., Burghardt, T.: Visual localisation and individual
identification of holstein friesian cattle via deep learning. In: Proceedings of the
IEEE International Conference on Computer Vision Workshops. pp. 2850–2859
(2017), https://openaccess.thecvf.com/content_ICCV_2017_workshops/w41/
html/Andrew_Visual_Localisation_and_ICCV_2017_paper.html 5

9. Andrew, W., Hannuna, S., Campbell, N., Burghardt, T.: Automatic individual
holstein friesian cattle identification via selective local coat pattern matching in
RGB-D imagery. In: 2016 IEEE International Conference on Image Processing
(ICIP). pp. 484–488. IEEE (2016), https://ieeexplore.ieee.org/abstract/
document/7532404 3, 5

10. Bedetti, A., Greyling, C., Paul, B., Blondeau, J., Clark, A., Malin, H., Horne, J.,
Makukule, R., Wilmot, J., Eggeling, T., et al.: System for elephant ear-pattern
knowledge (seek) to identify individual african elephants. Pachyderm 61, 63–77
(2020), https://pachydermjournal.org/index.php/pachyderm/article/view/
65 3

11. Bolger, D.T., Morrison, T.A., Vance, B., Lee, D., Farid, H.: A computer-assisted
system for photographic mark–recapture analysis. Methods in Ecology and Evolu-
tion 3(5), 813–822 (2012) 3

12. Bruslund Haurum, J., Karpova, A., Pedersen, M., Hein Bengtson, S., Moeslund,
T.B.: Re-identification of zebrafish using metric learning. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision Workshops.
pp. 1–11 (2020), https://ieeexplore.ieee.org/document/9096922 3, 5

13. Cheeseman, T., Southerland, K., Park, J., Olio, M., Flynn, K., Calambokidis, J.,
Jones, L., Garrigue, C., Frisch Jordan, A., Howard, A., et al.: Advanced image
recognition: a fully automated, high-accuracy photo-identification matching system
for humpback whales. Mammalian Biology 102(3), 915–929 (2022), https://doi.
org/10.1007/s42991-021-00180-9 2, 5

14. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet
network for person re-identification. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 403–412 (2017) 7

https://www.kaggle.com/c/noaa-right-whale-recognition
https://www.kaggle.com/c/noaa-right-whale-recognition
https://www.kaggle.com/competitions/humpback-whale-identification
https://www.kaggle.com/competitions/humpback-whale-identification
https://lila.science/datasets/beluga-id-2022
https://zindi.africa/competitions/turtle-recall-conservation-challenge
https://zindi.africa/competitions/turtle-recall-conservation-challenge
https://academic.oup.com/jmammal/article/91/6/1350/888329
https://academic.oup.com/jmammal/article/91/6/1350/888329
https://www.sciencedirect.com/science/article/pii/S0168169921001514
https://www.sciencedirect.com/science/article/pii/S0168169921001514
https://openaccess.thecvf.com/content_ICCV_2017_workshops/w41/html/Andrew_Visual_Localisation_and_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_ICCV_2017_workshops/w41/html/Andrew_Visual_Localisation_and_ICCV_2017_paper.html
https://ieeexplore.ieee.org/abstract/document/7532404
https://ieeexplore.ieee.org/abstract/document/7532404
https://pachydermjournal.org/index.php/pachyderm/article/view/65
https://pachydermjournal.org/index.php/pachyderm/article/view/65
https://ieeexplore.ieee.org/document/9096922
https://doi.org/10.1007/s42991-021-00180-9
https://doi.org/10.1007/s42991-021-00180-9


16 V. Cermak et al.

15. Crall, J.P., Stewart, C.V., Berger-Wolf, T.Y., Rubenstein, D.I., Sundaresan, S.R.:
Hotspotter-patterned species instance recognition. In: 2013 IEEE Workshop on
Applications of Computer Vision (WACV). pp. 230–237. IEEE (2013), https:
//ieeexplore.ieee.org/abstract/document/6475023 3

16. Deb, D., Wiper, S., Gong, S., Shi, Y., Tymoszek, C., Fletcher, A., Jain, A.K.: Face
recognition: Primates in the wild. In: 2018 IEEE 9th International Conference on
Biometrics Theory, Applications and Systems (BTAS). pp. 1–10. IEEE (2018),
https://ieeexplore.ieee.org/abstract/document/8698538/ 3, 7

17. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: Additive angular margin loss for
deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 4690–4699 (2019) 7, 8

18. Dlamini, N., van Zyl, T.L.: Automated identification of individuals in wildlife
population using siamese neural networks. In: 2020 7th International Conference
on Soft Computing & Machine Intelligence (ISCMI). pp. 224–228. IEEE (2020),
https://ieeexplore.ieee.org/document/9311574 2, 5

19. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020) 6

20. Drechsler, A., Helling, T., Steinfartz, S.: Genetic fingerprinting proves cross-
correlated automatic photo-identification of individuals as highly efficient in large
capture–mark–recapture studies. Ecology and Evolution 5(1), 141–151 (2015),
https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.1340 3, 4

21. Dunbar, S.G., Anger, E.C., Parham, J.R., Kingen, C., Wright, M.K., Hayes, C.T.,
Safi, S., Holmberg, J., Salinas, L., Baumbach, D.S.: Hotspotter: Using a computer-
driven photo-id application to identify sea turtles. Journal of Experimental Ma-
rine Biology and Ecology 535, 151490 (2021), https://www.sciencedirect.com/
science/article/pii/S0022098120301738 2, 3, 7

22. Ferreira, A.C., Silva, L.R., Renna, F., Brandl, H.B., Renoult, J.P., Farine, D.R.,
Covas, R., Doutrelant, C.: Deep learning-based methods for individual recogni-
tion in small birds. Methods in Ecology and Evolution 11(9), 1072–1085 (2020),
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-
210x.13436 5

23. Freytag, A., Rodner, E., Simon, M., Loos, A., Kühl, H.S., Denzler, J.: Chimpanzee
faces in the wild: Log-Euclidean CNNs for predicting identities and attributes
of primates. In: German Conference on Pattern Recognition. pp. 51–63. Springer
(2016), https://link.springer.com/chapter/10.1007/978-3-319-45886-1_5
2, 5

24. Gao, J., Burghardt, T., Andrew, W., Dowsey, A.W., Campbell, N.W.: Towards
self-supervision for video identification of individual holstein-friesian cattle: The
Cows2021 dataset. arXiv preprint arXiv:2105.01938 (2021), https://arxiv.org/
abs/2105.01938 5

25. Gilman, A., Hupman, K., Stockin, K.A., Pawley, M.D.: Computer-assisted recog-
nition of dolphin individuals using dorsal fin pigmentations. In: 2016 International
Conference on Image and Vision Computing New Zealand (IVCNZ). pp. 1–6. IEEE
(2016), https://ieeexplore.ieee.org/abstract/document/7804460 3

26. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-
identification. arXiv preprint arXiv:1703.07737 (2017) 8

27. Holmberg, J., Norman, B., Arzoumanian, Z.: Estimating population size, structure,
and residency time for whale sharks Rhincodon typus through collaborative photo-

https://ieeexplore.ieee.org/abstract/document/6475023
https://ieeexplore.ieee.org/abstract/document/6475023
https://ieeexplore.ieee.org/abstract/document/8698538/
https://ieeexplore.ieee.org/document/9311574
https://onlinelibrary.wiley.com/doi/abs/10.1002/ece3.1340
https://www.sciencedirect.com/science/article/pii/S0022098120301738
https://www.sciencedirect.com/science/article/pii/S0022098120301738
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210x.13436
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210x.13436
https://link.springer.com/chapter/10.1007/978-3-319-45886-1_5
https://arxiv.org/abs/2105.01938
https://arxiv.org/abs/2105.01938
https://ieeexplore.ieee.org/abstract/document/7804460


WildlifeDatasets: An open-source toolkit for animal re-identification 17

identification. Endangered Species Research 7(1), 39–53 (2009), https://www.int-
res.com/abstracts/esr/v7/n1/p39-53/ 5

28. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data 7(3), 535–547 (2019) 6

29. Kelly, M.J.: Computer-aided photograph matching in studies using individual iden-
tification: an example from Serengeti cheetahs. Journal of Mammalogy 82(2), 440–
449 (2001), https://academic.oup.com/jmammal/article/82/2/440/2373037 3,
4

30. Lahiri, M., Tantipathananandh, C., Warungu, R., Rubenstein, D.I., Berger-Wolf,
T.Y.: Biometric animal databases from field photographs: identification of individ-
ual zebra in the wild. In: Proceedings of the 1st ACM International Conference on
Multimedia Retrieval. pp. 1–8 (2011), https://dl.acm.org/doi/abs/10.1145/
1991996.1992002 5

31. Li, S., Li, J., Tang, H., Qian, R., Lin, W.: ATRW: A benchmark for amur tiger
re-identification in the wild. arXiv preprint arXiv:1906.05586 (2019), https://
arxiv.org/abs/1906.05586 2, 3, 5, 7

32. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 10012–10022
(2021) 6

33. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for
the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 11976–11986 (2022) 6

34. Miele, V., Dussert, G., Spataro, B., Chamaillé-Jammes, S., Allainé, D., Bonenfant,
C.: Revisiting animal photo-identification using deep metric learning and network
analysis. Methods in Ecology and Evolution 12(5), 863–873 (2021), https://
besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/2041-210X.13577
3, 5, 7

35. Musgrave, K., Belongie, S., Lim, S.N.: A metric learning reality check. In: Com-
puter Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXV 16. pp. 681–699. Springer (2020) 7, 9

36. Nepovinnykh, E., Eerola, T., Biard, V., Mutka, P., Niemi, M., Kälviäinen, H., Kun-
nasranta, M.: SealID: Saimaa ringed seal re-identification dataset. arXiv preprint
arXiv:2206.02260 (2022), https://arxiv.org/abs/2206.02260 5

37. Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V.,
Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., et al.: Dinov2: Learning robust
visual features without supervision. arXiv preprint arXiv:2304.07193 (2023) 3, 4

38. Papafitsoros, K., Adam, L., Čermák, V., Picek, L.: SeaTurtleID: A novel long-
span dataset highlighting the importance of timestamps in wildlife re-identification.
arXiv preprint arXiv:2211.10307 (2022) 5, 6

39. Papafitsoros, K., Panagopoulou, A., Schofield, G.: Social media reveals consistently
disproportionate tourism pressure on a threatened marine vertebrate. Animal Con-
servation 24(4), 568–579 (2021), https://doi.org/10.1111/acv.12656 1

40. Parham, J.R., Crall, J., Stewart, C., Berger-Wolf, T., Rubenstein, D.: Animal
population censusing at scale with citizen science and photographic identification.
In: 2017 AAAI Spring Symposium Series (2017), https://www.aaai.org/ocs/
index.php/SSS/SSS17/paper/viewPaper/15245 5

41. Pedersen, M., Haurum, J.B., Moeslund, T.B., Nyegaard, M.: Re-identification of
giant sunfish using keypoint matching. In: Proceedings of the Northern Lights Deep
Learning Workshop. vol. 3 (2022), https://www.eludamos.org/index.php/nldl/
article/view/6234 7

https://www.int-res.com/abstracts/esr/v7/n1/p39-53/
https://www.int-res.com/abstracts/esr/v7/n1/p39-53/
https://academic.oup.com/jmammal/article/82/2/440/2373037
https://dl.acm.org/doi/abs/10.1145/1991996.1992002
https://dl.acm.org/doi/abs/10.1145/1991996.1992002
https://arxiv.org/abs/1906.05586
https://arxiv.org/abs/1906.05586
https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/2041-210X.13577
https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/2041-210X.13577
https://arxiv.org/abs/2206.02260
https://doi.org/10.1111/acv.12656
https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/viewPaper/15245
https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/viewPaper/15245
https://www.eludamos.org/index.php/nldl/article/view/6234
https://www.eludamos.org/index.php/nldl/article/view/6234


18 V. Cermak et al.

42. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: International Conference on Machine Learning.
pp. 8748–8763. PMLR (2021) 3, 4

43. Renò, V., Dimauro, G., Labate, G., Stella, E., Fanizza, C., Cipriano, G., Car-
lucci, R., Maglietta, R.: A SIFT-based software system for the photo-identification
of the Risso’s dolphin. Ecological informatics 50, 95–101 (2019), https://www.
sciencedirect.com/science/article/pii/S1574954118301377 3

44. Schneider, J., Murali, N., Taylor, G.W., Levine, J.D.: Can Drosophila melanogaster
tell who’s who? PloS one 13(10), e0205043 (2018), https://journals.plos.org/
plosone/article?id=10.1371/journal.pone.0205043 5

45. Schofield, G., Papafitsoros, K., Chapman, C., Shah, A., Westover, L., Dick-
son, L.C., Katselidis, K.A.: More aggressive sea turtles win fights over forag-
ing resources independent of body size and years of presence. Animal Behaviour
190, 209–219 (2022), https://www.sciencedirect.com/science/article/pii/
S0003347222001312 1

46. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 815–823 (2015) 8

47. Trotter, C., Atkinson, G., Sharpe, M., Richardson, K., McGough, A.S., Wright,
N., Burville, B., Berggren, P.: NDD20: A large-scale few-shot dolphin dataset for
coarse and fine-grained categorisation. arXiv preprint arXiv:2005.13359 (2020),
https://arxiv.org/abs/2005.13359 2, 5

48. Trust, B.P.C.: Panthera pardus csv custom export (2022), https : / /
africancarnivore.wildbook.org/ 2, 5

49. Ueno, M., Kabata, R., Hayashi, H., Terada, K., Yamada, K.: Automatic individual
recognition of Japanese macaques (Macaca fuscata) from sequential images. Ethol-
ogy 128(5), 461–470 (2022), https://onlinelibrary.wiley.com/doi/full/10.
1111/eth.13277 3

50. Vidal, M., Wolf, N., Rosenberg, B., Harris, B.P., Mathis, A.: Perspectives on in-
dividual animal identification from biology and computer vision. Integrative and
Comparative Biology 61(3), 900–916 (2021), https://academic.oup.com/icb/
article-abstract/61/3/900/6288456 1

51. Wang, L., Ding, R., Zhai, Y., Zhang, Q., Tang, W., Zheng, N., Hua, G.: Gi-
ant panda identification. IEEE Transactions on Image Processing 30, 2837–2849
(2021), https://ieeexplore.ieee.org/document/9347819 5

52. Weideman, H., Stewart, C., Parham, J., Holmberg, J., Flynn, K., Calambokidis,
J., Paul, D.B., Bedetti, A., Henley, M., Pope, F., Lepirei, J.: Extracting identifying
contours for African elephants and humpback whales using a learned appearance
model. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision. pp. 1276–1285 (2020) 3

53. Wightman, R.: Pytorch image models. https://github.com/rwightman/pytorch-
image-models (2019). https://doi.org/10.5281/zenodo.4414861 6

54. Witham, C.L.: Automated face recognition of rhesus macaques. Journal of Neu-
roscience Methods 300, 157–165 (2018), https://www.sciencedirect.com/
science/article/pii/S0165027017302637 2, 5

55. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 1492–1500. Honolulu (2017) 6

https://www.sciencedirect.com/science/article/pii/S1574954118301377
https://www.sciencedirect.com/science/article/pii/S1574954118301377
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205043
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205043
https://www.sciencedirect.com/science/article/pii/S0003347222001312
https://www.sciencedirect.com/science/article/pii/S0003347222001312
https://arxiv.org/abs/2005.13359
https://africancarnivore.wildbook.org/
https://africancarnivore.wildbook.org/
https://onlinelibrary.wiley.com/doi/full/10.1111/eth.13277
https://onlinelibrary.wiley.com/doi/full/10.1111/eth.13277
https://academic.oup.com/icb/article-abstract/61/3/900/6288456
https://academic.oup.com/icb/article-abstract/61/3/900/6288456
https://ieeexplore.ieee.org/document/9347819
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861
https://doi.org/10.5281/zenodo.4414861
https://www.sciencedirect.com/science/article/pii/S0165027017302637
https://www.sciencedirect.com/science/article/pii/S0165027017302637


WildlifeDatasets: An open-source toolkit for animal re-identification 19

56. Yan, C., Pang, G., Bai, X., Liu, C., Ning, X., Gu, L., Zhou, J.: Beyond triplet
loss: person re-identification with fine-grained difference-aware pairwise loss. IEEE
Transactions on Multimedia 24, 1665–1677 (2021) 7

57. Zuffi, S., Kanazawa, A., Berger-Wolf, T., Black, M.J.: Three-D safari: Learning to
estimate zebra pose, shape, and texture from images "In the wild". In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 5359–5368
(2019), https://ieeexplore.ieee.org/document/9010937 2, 5

https://ieeexplore.ieee.org/document/9010937

	WildlifeDatasets: An open-source toolkit for animal re-identification

