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Fig. 1: Tree-D Fusion takes a single view image (left) and reconstructs a 3D simulation-
ready tree model. The tree model can be used to simulate growth over time with a
detailed branching structure with leaves. We provide a dataset of 3D reconstructed tree
models from 600,000 Google Street View images.

Abstract. We introduce Tree-D Fusion, featuring the first collection of
600,000 environmentally aware, 3D simulation-ready tree models gener-
ated through Diffusion priors. Each reconstructed 3D tree model corre-
sponds to an image from Google’s Auto Arborist Dataset, comprising
street view images and associated genus labels of trees across North Amer-
ica. Our method distills the scores of two tree-adapted diffusion models
by utilizing text prompts to specify a tree genus, thus facilitating shape
reconstruction. This process involves reconstructing a 3D tree envelope
filled with point markers, which are subsequently utilized to estimate
the tree’s branching structure using the space colonization algorithm
conditioned on a specified genus.

1 Introduction

Trees provide immense and essential value to human society and underpin diverse
ecosystems worldwide [74]. They cool the environment, improve air quality,
capture carbon dioxide, produce oxygen, and have a positive effect on human
physical and mental health [9, 13, 30, 67, 130, 136]. The complex effect of trees
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on the environment has been studied for centuries. Currently, computational
models that seek to understand these relationships are hindered by a lack of
data. In particular, acquiring phenotypical traits such as branching angles, wood
volume, crown size, and trunk width is currently infeasible at a large scale.
Simulation-ready 3D reconstructed trees (i.e., data that can be used in algorithms
simulating tree development) that fit real-world data would enable the estimation
of useful ecological quantities at scale. For example, the overall amount of wood or
carbon sequestration, and would even allow for large-scale simulations of “what-if”
scenarios, such as estimating shadow cover in both leaf-on and leaf-off scenarios
at different times of the day or in different seasons [76, 115, 133].

Existing developmental models of vegetation typically rely on manual param-
eter tuning [52, 65, 75, 90], or on a model parameter recovery that is fit to the
data [73, 81, 103]. Digital datasets are scarce and usually available as unstruc-
tured point clouds [57, 91] or images [7]. Providing realistically reconstructed
trees that fit the input data at scale is yet to be achieved, as large-scale and geo-
graphically diverse data is needed to ensure that the synthetic versions accurately
reflect the morphological diversity of real trees. Despite the abundance of tree
images, converting them into 3D models has been difficult due to trees’ complex
shapes and self-occlusions from branches and leaves, which often hide significant
portions of a tree. Thus, reconstruction methods often rely on biologically-based
developmental algorithms that approximate missing parts [51, 72].

We introduce Tree-D Fusion, the first tree dataset of its kind and scale,
containing 600,000 3D simulation-ready tree models grounded to individual real
trees via street-level imagery and diffusion priors. The generation process is
informed by genus-specific characteristics learned from the Auto Arborist Dataset
(AAD) [7] through a diffusion model trained specifically on tree images and
captions. The result is a 3D envelope used by a genus-conditioned developmental
model [52] that grows into this envelope while respecting the overall shape.
The output is a reconstructed simulation-ready 3D tree model with a detailed
branching structure and foliage.

We use the two Diffusion priors to reconstruct real trees from AAD, covering
23 cities across North America and over 300 genus categories. Tree-D Fusion
is validated against [56, 92, 109]. An example in Fig. 1 left demonstrates how,
from a single input image, our approach generates a model that can be used to
simulate the growth of that specific real-world tree over time, even simulating
the growth of leaves. Our dataset, Tree-D Fusion contains 600,000 such models
grounded on real-world trees, and we believe it will standardize benchmarking
and advancements in forestry.

2 Related Work

Remote sensing for trees and forests. Tree and forest monitoring is an
important topic in remote sensing, forestry, and ecology. Automated methods to
measure canopy cover and forest height have been explored at large scales [5, 11,
21, 29, 49, 62, 63]. Recent work seeks to do, modeling at the level of individual
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trees instead of forests, including individual tree detection, counting, and crown
delineation [82, 104, 111, 120, 121] and identifying the species of individual trees
in both wilderness [22, 32, 33, 39, 40, 66, 82, 99, 119] and urban settings [3, 6,
7, 12, 40, 105, 118, 131]. There is also increasing interest in understanding the
structure of trees at an individual level to estimate tree attributes, including
height, diameter at breast height (DBH), branching structure, and shadow
estimation [45]. In recent years, more sophisticated sensors such as airborne
LiDAR have allowed for higher detail representations of individual tree shapes
and structures, e.g., [8, 55, 98, 135]. However, these sensor measurements are
more expensive and cumbersome to collect at scale, especially at the level of
individual trees. Thus, methods that allow for scalable measurement of tree
geometry can significantly benefit these fields [110]. Our dataset addresses this
concern by offering a vast collection of realistic 3D tree models. Also, our data
are grounded in real-world images and exhibit the most realistic reconstruction
compared to recent methods, as demonstrated in Sec. 5.1.

Tree modeling has been studied from a very different perspective in the com-
puter graphics literature. The generation of 3D tree geometric and behavioral
models dates back to the seminal work of Lindenmayer, who introduced par-
allel string rewriting systems (L-systems) to simulate cellular subdivision [54].
L-systems were extended by Prusinkiewicz to capture branching patterns [85] and
later evolved [90] into a full mathematical formalism that captures continuous
development [86, 87], plant signaling [88], environmental interaction [89], and
ecosystems [26]. Recent approaches focus on the simulation of interactions of
tree models with wind [80], fire [37], climbing trees [38], and ecosystems [65, 73].
One of the most important open problems in tree modeling is reconstructing the
developmental model from data [34, 50, 68, 102]. A developmental model that
simulates an existing tree would allow for estimating its shape under different
conditions and predicting its shape changes and the effect on the environment.

Tree geometry reconstruction methods can be classified according to the
input data type, and the most prevailing are RGB images and point clouds.
Tree reconstruction from point clouds involves creating a tree skeleton [14] that
captures tree topology and basic features (branching angles, branch length) [27,
61, 126]. Other methods use voxels to retrieve the shape from particle flow [72]
or fitting geometric proxies to approximate the branch shape [1, 2, 36, 42].
Although tree geometry has been extensively investigated, only a limited number
of studies have concentrated on foliage reconstruction [4, 10, 15, 17, 129] or trees
incorporating leaves [60, 123]. RGB images are a much more widely accessible
modality, so there is significant interest in reconstructing trees from RGB image
input. Some methods make use of incomplete information supplied via user input
to identify the trunk and branches [19, 59, 93, 107, 108]. Other methods create
3D voxels with approximate information that control tree growth [96] or use
multi-image input [35]. Recent deep learning approaches use transformer-based
tree reconstruction to L-systems [50], single image-based tree reconstruction using
convolutional networks [51], statistical inference [44], or adversarial networks [59].
Our approach is inspired by an algorithm that generates a 3D geometric envelope
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completed by a developmental model [51]. Rather than a static proxy, we offer a
detailed 3D envelope capturing the tree’s shape more accurately.
Single image 3D model reconstruction has been an active area of research
for a long time [18, 23, 28, 64, 69, 71, 77, 79, 114]. Given RGB images, these
methods aim to reconstruct common 3D model types such as mesh [114, 122, 127],
voxels [20, 78, 112, 124, 128], or point clouds [31]. Recently, diffusion models [97]
for 3D generation applications [84, 113, 116] have been used as priors for single
image reconstruction [25, 56, 92, 95, 109, 125]. These approaches significantly
improve reconstruction quality for occluded parts in a given input image.

Input Image Front-view Side-view

Fig. 2: Magic123 [92] fails to cap-
ture trees’ complex geometry.

Despite these advancements, reconstruct-
ing trees from a single image remains chal-
lenging, and existing methods fail to create
realistic 3D models of trees due to the intri-
cate complexity of a tree’s structure.

Fig. 2 demonstrates reconstructed trees us-
ing Magic123 [92] that generates unrealistic
tree geometry. These shortcomings of existing
methods can be traced back to the inadequate
representation of tree geometry in the diffu-
sion models that are used as priors for the
3D shape, and that is the problem we aim to
solve. Tree-D Fusion addresses the challenge
of predicting occluded branches from a single
image by outlining the tree’s contours and then using a species-specific procedural
model [52] to grow the tree within these boundaries.

3 Background

We first briefly review diffusion models for 3D generation via score distillation [113].
As a probabilistic model, conditional diffusion aims to learn a model that can
efficiently sample from the distribution P (I|c) of the image I given some context c.
This is done by learning a family of denoisers D(I|c;σ) at different Gaussian
noise levels σ. As shown in the works [43, 101], the denoiser D approximates the
gradient field of the data log-likelihood, also known as the “score function”:

∇I logPσ(I|c) ≈ (D(I;σ)− I)/σ2. (1)

With this interpretation of a diffusion model, [113] proposed Score Jacobian
Chaining (SJC) that applies the “chain-rule” to distill knowledge from a trained
diffusion model. Specifically, SJC is applied to optimizing a NeRF [16, 106] for
generating 3D assets:

∂Pσ(I|c)
∂θ

=
∂Pσ(I|c)

∂I
score

∂I

∂θ
, (2)
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NeRF 𝜏𝜏(𝜃𝜃∗)

Learning 2D and 3D Tree Priors

Image 𝑰𝑰
Genus

Loss Construction + Optimization

2D Diffusion Prior 3D Diffusion Prior

Synthetic Tree ModelsReal Tree Images

Reconstruction

Fig. 3: The input to Tree-D Fusion is an RGB image of a tree and its genus. To perform
shape reconstruction, we minimize the loss function w.r.t. the NeRF parameter θ. The
loss function is constructed from two diffusion models, StableDiffusion with Lora and
Zero123, trained on real tree images and synthetic 3D tree models. The output is an
optimized NeRF τ(θ∗), which is a detailed 3D tree envelope. We then populate the
volume of τ(θ∗) by markers based on the envelope and reconstruct trees by genus-
conditioned space colonization algorithm.

with image I rendered from a NeRF with trainable parameters θ. However, since
the rendered image is not noisy and the denoiser is trained on noisy images,
naïvely applying the score model leads to an out-of-distribution (OOD) problem.

Perturb-and-Average Scoring (PAAS) [113] is proposed to address this problem

PAAS(x, σ) = En∼N (0,I)(D(x+ σn;σ)− x)/σ2 (3)

to be used in place of the score. PAAS adds noise to the rendered image such
that the data becomes in-distribution relative to the denoiser’s training data.

We note that Eq. (3) is also known as score distillation in the concurrently
proposed DreamFusion [84] under a different mathematical formulation. Tree-D
Fusion employs SJC/DreamFusion to distill the scores of diffusion models tailored
for tree data, enabling the reconstruction of simulation-ready 3D tree models.

4 Simulation Ready Tree Dataset

We construct a large dataset of 600,000 reconstructed 3D trees that faithfully
represent the 3D geometry and can simulate their growth, including environmental
response to light and obstacles (see Fig. 1).

The release of the AAD [7], featuring extensive tree images from Google
Street View, aids the creation of 3D tree models from single images using a
developmental model, capturing a specific instance of the tree’s growth. We
leverage recent advances in diffusion models to reconstruct 3D trees. Given an
input image, we first reconstruct a complete 3D volume of the tree using diffusion
models as priors and fit the 3D volume by a developmental model conditioned
on the tree genus. In particular, we use the space colonization model [75], also
used to reconstruct 3D tree geometry [52] for realistic tree growth.

An overview of our approach is illustrated in Fig. 3. In the following, we
describe how we train tree-specific diffusion models to be used as priors in Sec. 4.2,
followed by the details of the 3D trees reconstruction in Sec. 4.3.
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Fig. 4: Models of trees and the phenotypic characteristics derived from them: height
and Diameter at Breast Height (DBH). The radius depicted illustrates the projected
amount of shade.

4.1 Application

a) b) d) e)c) f) g)

Fig. 5: The input image (a) is reconstructed into a digital twin (b-c) that responds
to the environment such as the proximity to a wall (d-e). Growing three copies of the
same tree shows their completion for space (f-g).

Our dataset, the first real-world 3D and 2D tree data at a large scale, seeks
to standardize benchmarking and propel forestry deep learning, paralleling Ima-
geNet’s role in computer vision. It helps study distant trees, predicts tree diameter,
and supports landscape design and forestry management. It also integrates into
mapping and AR apps for enhanced 3D tree visualization. Our dataset enables
the creation of a 3D scene from a single Google Street View image, without the
need for camera parameters, as demonstrated in Fig. 1. The image on the far
left serves as the initial input, within which we delineate the three trees using
dashed outlines. As time progresses, we model the development of these three
trees. The final image depicts the mature trees, complete with foliage, ready for
subsequent simulations like predicting urban heat island issues by estimating the
total shadow area in the city.

Fig. 6: Shadows cast
by a tree without
leaves (left) and with
foliage (right).

The reconstructed simulation-ready 3D trees are com-
putational models that can be used in many practical
applications. An example in Fig. 5 (a) shows a tree from
Google Street View images and its reconstructions (b-c).
We then put a virtual object and simulate the tree’s growth
close to a wall (d-e), and we copy it twice and show its
competition for space (f-g).

We quantitatively evaluate other phenotypical traits,
such as tree height, the shadow area (as pixel-to-meter
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Fig. 7: Low-quality images from the AAD are excluded in Tree-D Fusion.

ratio), and the Diameter at Breast Height (DBH) commonly used in the forest
industry (see Fig. 4). On average, our estimated DBH is predicted to be 16.4%
(4.0 cm) larger, with a standard deviation of 11.6% (2.7 cm). Additionally, our
model predicts a height of 12.5% (1.0 m) shorter than the actual, with a standard
deviation of 6.7% (0.6 m). An example in Fig. 6 shows the effect of shadow cast
with and without leaves.

4.2 Training Tree-Specific 2D and 3D Diffusion Prior

Tree specific 2D prior. In order to obtain an effective 2D prior, we need a
diffusion model P2D(I|c;σ) that is trained to generate tree images I given a
corresponding text caption c. We utilize the AAD [7], which includes around one
million real tree images.

When training with these noisy labels, we observe that the diffusion model
generalizes poorly and does not generate high-quality tree images. The dataset
also contains images with heavy light exposure, extensive blurry images resulting
from privacy filters, and low-image quality of distant trees (see Fig. 7). We
semi-manually removed noisy images from the AAD to train this diffusion model.
First, we divide the image into patches and measure the variance of the Laplacian
in each patch. This approach measures image sharpness, averaging these values
to exclude very blurry images for manual review. We will release this data along
with this manuscript.

We train a tree-genus-conditioned diffusion model using Low-Rank Adaptation
(LoRA) [41] on top of the pre-trained Stable Diffusion 1.5 version [97] as LoRA [41]
is more data efficient. We create image captions using BLIP [53] for genus
conditioning and prefix the word “tree” within the caption with the specific genus
annotation from AAD. For example, BLIP outputs the caption of “A tree next
to a house.”. The caption will be A {genus} tree next to a house, with
{genus} replaced by the name of the genus.
Tree specific 3D prior. To train the 3D prior, P3D(Iπ|I, π;σ), we need data
that contains paired images (I, Iπ) of the same tree at two different viewing
angles, and their corresponding viewing angle π.

To obtain such data, we generated synthetic 3D tree models following Lee et al.
[50] over 12 different types of trees: Pine, Maple, Oak, Acacia, Birch, Cabbage,
Corkscrew, Elm, Hazel, Tulip, Walnut, and Willow (some shown in Fig. 8).

We produce 2,000 synthetic trees for each of the 12 tree categories. We train
the diffusion model of Zero123 [56] from scratch for 1,000 iterations. We train
this model to be genera-agnostic, i.e., not conditioned on the genera, because
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Acacia Birch Cabbage Corkscrew Elm Hazel

Maple Oak Pine Tulip Walnut Willow

Fig. 8: Examples of synthetic trees used for training the 3D prior.

our synthetic trees do not cover all the genera in the AAD dataset. For example,
there are more than 100 genera of trees in San Jose. For training this 3D prior,
we use tree geometry information, which includes 12 rendered views, each 30
degrees apart, per tree 3D object.

4.3 Single Image Tree Shape Reconstruction

We propose a specialized approach for reconstructing trees based on the generic
3D shape reconstruction method of Magic123 [92]. We use our trained tree-specific
diffusion models (Sec. 4.2) and eliminate the depth and normal smoothness loss
terms from Magic123 that we found not applicable to tree reconstruction.
Problem formulation. Given an tree image I with a text prompt c, we
formulate shape reconstruction as an optimization problem:

min
θ

Lrec(I, T (θ)) + αL2D(T (θ), c) + βL3D(I, T (θ)), (4)

where T (θ) denotes the underlying 3D model, Instant-NGP [70] in our case, with
parameters θ, Lrec denotes a reconstruct loss, L2D denotes a loss based on the
2D diffusion prior, L3D denotes a loss based on the 3D diffusion prior, and α and
β are weights for each of the priors.
Loss definitions. Reconstruction loss Lrec: As in Magic123, Lrec encourages
the rendered image Tπ(θ) from the view π to match the input image I. The loss
consists of two terms:

Lrec = λrgb ∥M(I)⊙ (I − Tπ(θ))∥22 + λmask ∥M(I)− M(Tπ(θ))∥22 . (5)

The first term calculates the difference between the pixels of the image within the
segmentation mask of the tree. The symbol ⊙ stands for element-wise multiplica-
tion. The second term encourages the 3D occupancy to be consistent with the
2D tree mask obtained from the segmentation model. To do this, the algorithm
extracts a mask M that indicates the occupancy at each pixel by integrating the
volume density from the 3D model T (θ). We use the Segment Anything Model
(SAM) for 2D instance segmentation masks [48].
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2D diffusion prior loss L2D: A pre-trained diffusion model provides a prior
for the non-observed parts of the tree. Specifically, we minimize the expected
negative log probability of the diffusion model from different viewpoints π′, i.e.,

L2D(T (θ), c) = Eπ′ [− logP2D(Tπ′(θ)|c;σ)] . (6)

Here, P2D corresponds to the adapted diffusion model that specializes in tree
image generation (Sec. 4.2).

3D diffusion prior loss L3D utilizes another pre-trained diffusion model to
provide a prior for tree generation. In contrast to our 2D prior, the 3D prior’s
diffusion model is trained to be 3D aware. Instead of conditioning on a text
prompt, this diffusion model is trained to generate the image at a particular
viewpoint π′ of a reference image I. Once again, we minimize the expected
negative log probability of the diffusion model P3D over different viewpoints π′,
i.e.,

L3D(I, T (θ)) = Eπ′ [− logP3D(Tπ′(θ)|I, π′;σ)] . (7)

With the loss functions defined, we then solve the optimization problem
in Eq. (4) using Adam [47], using PAAS (Eq. 3) to compute the gradient of
L2D and L3D w.r.t. to θ. We use a learning rate of 0.001 and optimize for 2,000
iterations without weight decay. We set λrgb = 5.0, λmask = 20.0, α = 1.0 and
β = 8.0.

4.4 3D Simulation-Ready Tree Reconstruction

Younger Now Older

Input image

3D model

Fig. 9: The developmen-
tal model captures the
real-tree shape (red frame)
as a single instance in time.
It allows us to look back
and forward in time.

After computing the tree’s 3D geometry, we extract
its 3D volume and use existing methods to create
a simulation-ready 3D tree. This algorithm is pa-
rameterized to generate the tree model. While var-
ious developmental models of trees (e.g., [90, 103])
could be used, these are not suited for fitting the tree
into a particular shape. Instead, we use the realistic
tree growth algorithm [52] that extends the previous
space colonization algorithm [75] for fitting the tree
shape. The algorithm [52] is conditioned on tree genus,
which prescribes branching angles, internode lengths,
branch radii, and other parameters [24, 117]. Environ-
mental sensitivity is simulated by following existing
works [81, 89]. Fig. 5 shows a reconstructed tree under
varying conditions and Fig. 9 shows the simulation of
the tree over time.

With the reconstructed 3D tree models from the Auto Arboist Datset [7], we
aim to share the first real-world large 3D and 2D tree dataset. Our dataset can
standardize benchmarking in forestry deep learning, similar to ImageNet’s impact
on computer vision. This will advance research, aid in studying inaccessible
trees, manage urban heat islands, and support landscape design and forestry
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Table 1: ICTree is the perceived realism scores of generated trees. Tree-D Fusion shows
an average improvement of 44.83%±25.9%.

ICTree [83]↑ DGauss [109] Magic123 [92] Zero123 [56] RBV [51] Ours

Cupressus 0.46±0.03 0.45±0.05 0.46±0.04 0.75 ± 0.09 0.65 ± 0.07
Magnolia 0.46±0.04 0.45±0.03 0.46±0.03 0.616 ± 0.16 0.71 ± 0.08

Pinus 0.44±0.04 0.46±0.03 0.44±0.04 0.627 ± 0.16 0.69 ± 0.08
Ligustrum 0.45±0.04 0.45±0.03 0.45±0.04 0.665 ± 0.16 0.71 ± 0.07

Cinnamomum 0.45±0.02 0.47±0.02 0.46±0.02 0.658 ± 0.16 0.71 ± 0.08
Total 0.45±0.03 0.45±0.03 0.45±0.03 0.67 ± 0.12 0.71 ± 0.05

Table 2: LPIPS [132] between a frontal view of a tree envelope from RBV [51] and
Tree-D Fusion shows 20.21%±8.89% improvement.

LPIPS [132]↓ DGauss [109] Magic123 [92] Zero123 [56] RBV [51] Ours

Cupressus 0.68± 0.02 0.68± 0.02 0.69±0.02 0.53 ± 0.01 0.52 ± 0.02
Magnolia 0.73± 0.03 0.72± 0.03 0.73±0.03 0.59 ± 0.05 0.55 ± 0.06

Pinus 0.70± 0.01 0.69± 0.02 0.70±0.02 0.55 ± 0.04 0.50 ± 0.05
Ligustrum 0.74± 0.03 0.74± 0.02 0.74±0.03 0.59 ± 0.04 0.56 ± 0.05

Cinnamomum 0.74± 0.02 0.73± 0.02 0.74±0.02 0.59 ± 0.05 0.56 ± 0.05
Total 0.72 ± 0.03 0.71± 0.04 0.72 ± 0.03 0.58 ± 0.05 0.54 ± 0.06

management. Additionally, it can enhance map and augmented reality applications
by displaying 3D trees.

5 Experiments and Applications

Implementation. We implemented our interactive procedural vegetation frame-
work with C++ and Vulkan. We also added a path tracer based on Nvidia OptiX
8.0. The 2,000 synthetic trees (tree specific 3D priors P3D(Iπ|I, π;σ) from Sec. 4.2)
were generated for 113 hours on a laptop with NVIDIA RTX 3070. Using the 3D
synthetic tree models, training the 3D prior model using Zero123 [56] took 89
hours using 6 NVIDIA RTX5000 GPUs, and training the 2D prior model using
LoRA [41] took 9 hours using 4 NVIDIA RTX5000 GPU devices on the San Jose
dataset. Reconstructing a 3D tree model from an RGB image takes 20 minutes
using a single NVIDIA RTX 3090 GPU, and it would require ≈23 GPU-years on
the single GPU to complete our 600,000 3D tree dataset.

Experiment setup. We conduct experiments using the AAD dataset [7] that
contains 23 cities; among these, we use the city of San Jose to benchmark our
system. We select the five most common tree genera, Cupressus, Magnolia, Pinus,
Ligustrum, and Cinnamomum, from the city.

Baselines. We compare with the Radial Bounding Volume (RBV) [51], a tree-
specific reconstruction using a single image with Deep Learning. We also provide
comparisons with recent state-of-the-art single-image 3D object reconstruction



Tree-D Fusion 11

Table 3: CLIP-Similarity [94] between four views of a tree envelope shows an improve-
ment of 45.34%±23.86%.

CLIP-Sim. [94]↑ DGauss. [109] Magic123 [92] Zero123 [56] RBV [51] Ours

Cupressus 0.47±0.05 0.49±0.03 0.38±0.04 0.54 ± 0.04 0.67 ± 0.06
Magnolia 0.46±0.04 0.46±0.03 0.39±0.04 0.54 ± 0.04 0.65 ± 0.07

Pinus 0.38±0.04 0.38±0.04 0.34±0.03 0.54 ± 0.04 0.64 ± 0.08
Ligustrum 0.45±0.03 0.45±0.9 0.35±0.06 0.54 ± 0.04 0.65 ± 0.06

Cinnamomum 0.40±0.08 0.42±0.05 0.34±0.05 0.54 ± 0.04 0.65 ± 0.06
Total 0.43±0.06 0.44±0.06 0.36±0.05 0.54 ± 0.04 0.63 ± 0.07

Table 4: A Chamfer distance (CD) from real LiDAR scanned trees shows an improve-
ment of 32.62%±6.44%.

CD(10−2) ↓ DGauss. [109] Magic123 [92] Zero123 [56] RBV [51] Ours

Tree 1 5.09 6.05 5.31 6.44 4.62
Tree 2 5.13 4.53 6.09 4.71 2.81
Tree 3 2.52 3.87 4.13 4.36 2.31
Total 4.25 4.82 5.18 5.17 3.25

methods based on diffusion models, including Zero123 [56], Magic123 [92], Dream-
Gaussian [109].
Evaluation metrics. We evaluate our generated 3D tree models from the San
Jose subset of AAD, which contains 4,400 trees with 133 genus-level categories.
We use four evaluation metrics:
1. ICTree [83] evaluates tree plausibility, focusing on their unique traits. It

assesses various geometric aspects, including branch straightness and segment
ratios, using 29 parameters to analyze branching structures, as discussed in
works [50, 134].

2. LPIPS [132] measures image similarity between the rendered front view of
the reconstructed tree model (3D tree envelope) and the input image.

3. CLIP-Similarity [94] measures the similarity between images at a semantic
level. We compute the average CLIP similarity between the input image and
four renderings of the reconstructed tree at orientations 0o, 90o, 180o, and
270o. Higher values indicate the renderings are more similar to the input.

4. Chamfer distance measures the differences in an overall tree structure
using lidar scanned tree point cloud data [58] and sampled point clouds from
our generated 3D tree models.

5.1 Quantitative Results

Tab. 1 reports the ICTree [83] score to compare the perceptual realism of tree
branching structures generated using Tree-D Fusion. We use 133 tree genera from
the San Jose dataset, and on average, Tree-D Fusion scores 0.71 with a standard
deviation of 0.05, which is an improvement in the average of 20.21%±8.89%
compared to the recent works [51, 56, 92, 109]. Tree-D Fusion achieves unparal-
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Genus Input RBV [51] Zero123 [56] Magic123 [92] DGauss. [109] Ours

Cupressus

Ginkgo

Ligustrum

Magnolia

Tristaniopsis

Fig. 10: Single tree image reconstruction front-view results.

leled realism in generating tree structures by confirming 29 geometric branching
attributes.

In Tab. 2, we use the pre-trained VGG [100] network to calculate a perceptual
similarity between our generated and RBV tree front-views. We show the LPIPS
score of five common tree genera from the San Jose dataset, including all the
tree genera in Tab. 2. Ours shows 20.21%±8.89% greater perceptual similarity
to a conditioned image than the generated trees from the previous works [51, 56,
92, 109].

Tab. 3 shows the CLIP-Similarity between RBV [51] and Tree-D Fusion. We
used four evenly distributed views around the object’s 360-degree to validate the
consistency of the 3D-generated tree model. Using the five common tree genera
from the San Jose dataset, Tree-D Fusion outperforms other works [51, 56, 92, 109]
by an average of 45.34%±23.86%.

Tab. 4 compares the Chamfer Distance between LiDAR-scanned tree point
clouds and our results using captured images [58]. We show that our generated
tree models are reconstructed in the average of 32.62%±6.44% closer to the real
trees than other works [51, 56, 92, 109].

Based on the four reconstruction metrics, Tree-D Fusion shows it becomes a
new state-of-the-art method to reconstruct a 3D tree model from a single unposed
RGB image. Thus, our dataset contains 3D tree models that are perpetually,
visually, and geometrically realistic.

5.2 Qualitative Results

We show the existing methods generate unsatisfying tree structures from a single
image due to a lack of tree geometry information and visualize its front (Fig. 10)
and top-views (Fig. 11). RBV [51] capture the approximated contour estimation,
Zero123 [56] also captures contour information but includes holes in the Ginko
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Genus Input RBV [51] Zero123 [56] Magic123 [92] DGauss. [109] Ours

Cupressus

Ginkgo

Ligustrum

Magnolia

Tristaniopsis

Fig. 11: Single tree image reconstruction top-view results.

and Ligustrum genus, and the front-view is flat. Also, it generates non-tree-like
shapes near the top area in the Tristaniopsis tree genus. Magic123 [92] fails to
estimate tree depth, concentrating on the center and creating a gap between the
inner and outer sides. Moreover, it does not generate overall balanced tree volumes
and tends to look overly simplistic. DreamGaussian [109] captures the overall
tree contour but it creates numerous holes around the center of 3D tree models
with bubble-like artifacts visible from the top view. Tree-D Fusion captures the
tree contours without any holes and generates tree-like balanced volumetric trees
from the front and the top view.

5.3 Ablation Study

We conduct ablation studies using 3D Gaussian Splatting [46] on a tree and
different α/β ratios. Synthesizing novel views for trees, as seen in Fig. 12,

Fig. 12: Novel
view failed using
3DGS.

has proven challenging, hindering the extraction of high-quality
3D boundaries. Successful synthesis relies on pre-trained data,
as shown by our use of 24,000 synthetic 3D tree models. This
highlights the need for large-scale real image-based 3D tree
reconstruction datasets in forestry to utilize deep learning
efficiently. We evaluate the tree reconstruction metrics, CLIP-
Similarity [94], LPIPS [132] and ICTree [83] using four different
α/β ratios. Empirically, from Tab. 5, we found that the ratio

around 0.1 achieves a good performance.

6 Conclusion

We introduce Tree-D Fusion, the first large dataset of 3D reconstructed tree
models enabled by a diffusion-based approach to construct 3D tree models from
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Table 5: A reconstruction quality comparison between different α/β ratios.

α/β CLIP [94]↑ LPIPS [132]↓ ICTree [83]↑

0.01 0.53 ± 0.06 0.58 ± 0.07 0.52 ± 0.07
0.1 0.60 ± 0.07 0.59± 0.06 0.55 ± 0.06
1 0.59± 0.07 0.58± 0.07 0.50 ± 0.05
10 0.57± 0.07 0.59± 0.06 0.47± 0.03

single images. We use images from the AAD [7] and synthetic trees to train
diffusion models that reconstruct 3D tree volumes that are then completed by a
developmental model to provide functional-structural tree model for individual
real trees. Our generated dataset has the potential to enable diverse and impactful
applications in 3D tree phenotyping at a previously unprecedented scale.

Fig. 13: Single-image re-
construction fails with
asymmetric trees, produc-
ing different 3D models
from varying views.

This is the first large dataset of its kind, but it
comes with a few limitations. First, the 3D model
shapes are constrained by the capabilities of the simu-
lator. Second, single-image reconstruction, limited by a
single viewpoint and missing information, is best suited
for symmetric trees. An example in Fig. 13 epitomizes
this case. The same asymmetric tree from two differ-
ent angles yields significantly varied 3D models. High
branch density can also hinder precise reconstruction
due to the complexity of tree segmentation. Finally,
predicting a branch structure obscured by leaves with
100% fidelity to nature is an ongoing challenge due to
its complex geometry.

There are many possible avenues for future work. First, a comprehensive
3D tree database could enable the study of light and environmental effects on
reconstruction. Additionally, incorporating real tree models with algorithms for
partially occluded parts during training could improve detection significantly, as
single-image segmentations struggle to disentangle nearby tree crowns.
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