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Abstract. Earth’s forests play an important role in the fight against
climate change, and are in turn negatively affected by it. Effective moni-
toring of different tree species is essential to understanding and improving
the health and biodiversity of forests. In this work, we address the chal-
lenge of tree species identification by performing semantic segmentation
of trees using an aerial image dataset spanning over a year. We com-
pare models trained on single images versus those trained on time series
to assess the impact of tree phenology on segmentation performances.
We also introduce a simple convolutional block for extracting spatio-
temporal features from image time series, enabling the use of popular
pretrained backbones and methods. We leverage the hierarchical struc-
ture of tree species taxonomy by incorporating a custom loss function
that refines predictions at three levels: species, genus, and higher-level
taxa. Our findings demonstrate the superiority of our methodology in
exploiting the time series modality and confirm that enriching labels
using taxonomic information improves the semantic segmentation per-
formance.

Keywords: Forest monitoring · Remote sensing · Deep learning · Time
series

1 Introduction

Climate change and biodiversity loss in forests are closely intertwined, with each
potentially exacerbating the other. As climate patterns shift, the suitable habi-
tats for many tree species change, leading to alterations in forest composition
and potential biodiversity loss [1,35]. Conversely, reduced forest biodiversity can
diminish carbon absorption and storage capacity, further contributing to cli-
mate change. Different tree species exhibit varying tolerances to environmental
changes, resulting in diverse phenological responses [65], shifts in species distri-
bution [3], and differential growth patterns [2, 6]. Understanding these species-
specific responses is crucial for effective forest monitoring and management.

Increasingly, deep learning-based methods, alongside remote sensing applica-
tions (e.g . land-use and land-cover mapping [25,26,28,63], change detection [33]),
have helped with advancing the field of forest monitoring in tree species classi-
fication [21], biomass estimation [70] and tree crown segmentation [57,67].
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The use of temporal data as inputs for these methods has shown promise in
various applications, including crop mapping [9, 56, 60] and forest health map-
ping [25]. However, the potential of leveraging time series data for tree crown
segmentation, particularly to capture phenological changes, remains largely un-
explored.

In this work, we address this gap by evaluating multiple models on the task
of tree crown segmentation using a rich dataset from the Laurentides region of
Québec, Canada [16]. This dataset offers unique characteristics, including high-
resolution time series data and a number of closely-related tree species classes,
allowing us to investigate the impact of phenological changes on tree species
identification.

We employ state-of-the-art models in semantic segmentation for single-image
and time series segmentation. Additionally, we introduce a lightweight module to
extract spatio-temporal features from a time series input, allowing it to be used
with backbones that typically operate on single images. To address the challenge
of mixed label granularity in our dataset, we propose a custom hierarchical
loss function that incorporates species, genus, and family-level labels. Our key
contributions are:

– We introduce a simple yet effective module for extracting spatio-temporal
features, enabling the use of pretrained models for segmenting tree crowns
with time series.

– Our results demonstrate the importance of time series data in identifying
tree species, particularly when considering phenological changes.

– We evaluate models that perform well across taxonomic hierarchies by lever-
aging a custom hierarchical loss function.

2 Related Work

2.1 Semantic segmentation

Deep learning applications for computer vision have been widely explored over
the years, including various methods based on convolutional neural networks
(CNNs) such as Fully Convolutional Networks (FCNs) [41], U-Net [53], and
DeepLab [12].

The ‘dilated’ (also named ‘atrous’) convolution [12, 69] has been introduced
to increase the receptive field of CNNs, while attention mechanisms [22,48] have
been incorporated to focus on relevant regions. Multi-scale and pyramid pooling
approaches, such as PSPNet [71] and DeepLabV3+ [13], have been employed to
capture context at different scales. Specific methods have also been designed to
exploit temporal information for semantic segmentation, e.g . with 3D U-Net [15]
and V-Net [45].

Recently, transformer-based models have gained popularity in semantic seg-
mentation, showing impressive results, e.g . Mask2Former [14] combining strengths
of CNN-based and transformer-based architectures. It employs a hybrid ap-
proach with a CNN backbone for feature extraction and a transformer decoder
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for capturing global context and generating high-resolution segmentation masks.
Other transformer-based models, such as SETR [72], TransUNet [11], and Seg-
Former [68], have also been proposed, leveraging the self-attention mechanism
to capture long-range dependencies and global context effectively. These latter
methods have demonstrated competitive or improved performances on various
semantic segmentation benchmarks compared to traditional CNN-based models.

2.2 Satellite image time series (SITS)

Leveraging the temporal information with satellite and aerial imagery provides
information on land dynamics and phenology. Researchers have used convolu-
tional neural networks (CNNs) in temporal convolutions for land cover map-
ping [43] and crop classification [55]. Attention-based methods have been used
for encoding time series, which have shown to be well-suited for satellite im-
agery [23, 54, 56]. More recently, transformer-based methods have proven their
merit using SITS with self-supervised learning exploiting unlabelled data to im-
prove performance on downstream tasks [17,51,60,61].

A recent method has also proposed a new encoding scheme for SITS in order
to fit popular pretrained backbones rather than creating task-specific architec-
tures [9].

2.3 Forest monitoring

Deep learning methods have helped advance the field of vegetation monitoring
using remote sensing, including both satellite and aerial imagery [32], enabling
progress in forest monitoring for accurate and efficient analysis at scale [4,47,52].
Such models have achieved state-of-the-art performance in classifying tree species
from high-resolution remote sensing imagery [21,49].

Mapping deforestation at large scale using satellite imagery has also been
explored [44, 50]. Computer vision and remote sensing have also been leveraged
in applications to plant phenology [29]. Global vegetation phenology has been
modelled with satellite imagery alongside meteorological variables as inputs of
a 1D CNN [73]. Automated monitoring of forests have also been investigated to
accurately identify key phenological events [10,59,66].

Deep learning-based segmentation methods have been applied to automat-
ically delineate individual tree crowns from high-resolution remote sensing im-
agery [8, 37, 57, 67]. In a similar vein, a U-Net architecture has been used for
fine-grained segmentation of plant species using aerial imagery [31]. A founda-
tion model trained on datasets from multiple sources is also able to perform
decently on a variety of downstream tasks for forest monitoring, including clas-
sification, detection and semantic segmentation [7].

2.4 Hierarchical losses

Hierarchical loss functions have been extensively explored in various tasks to
leverage the inherently hierarchical structure of object classes. By incorporat-
ing information from different levels of granularity, such loss functions aim to
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(a) Sample from 2nd September 2021. (b) Labels overlaying the sample image.

Fig. 1: Example of an annotated sample from the studied dataset. The image
1a shows a scene captured on September 2nd, while the image 1a overlays the tree
species labels on the same scene. Each tree species is represented by a distinct color as
seen in Table 1.

improve the ability of the model to make fine-grained distinctions and enhance
overall performance. For classification tasks, a curriculum-based hierarchical loss
gradually increasing the specificity of the target class was explored by [24]. Sim-
ilarly, a loss function evaluated at multiple operating points within the class hi-
erarchy has helped to capture information at various levels of this hierarchy [64].
In contrast, one may encourage the model to make better mistakes by assign-
ing different weights to the misclassified samples based on their position in the
hierarchy, promoting more semantically meaningful errors [5].

Hierarchical loss functions have also been applied to object detection [30,74]
and semantic segmentation [36, 46, 58] demonstrating the effectiveness of incor-
porating a more structured and informative signal during the learning process.

3 Dataset

The dataset used in our work [16] consists of high-resolution RGB imagery from
unmanned aerial vehicles (UAVs) at seven different acquisition dates over a
temperate-mixed forest in the Laurentides region of Québec, Canada during
the year 2021. The acquisitions were conducted monthly from May to August,
with three additional acquisitions in September and October to capture colour
changes during autumn. The dataset contains a total of 23,000 individual tree
crowns that were segmented and annotated, mostly at the species level, with
1,956 trees annotated only at the genus level due to the difficulty in accurately
identifying species-level labels. This dataset offers a unique combination of time
series data and a large number of fine-grained tree species. This allows us to lever-
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age the temporal information to investigate the impact of phenological changes
on tree species identification. An example of this dataset is shown in Figure 1.

We create splits which are separated spatially for training, validation, and
testing while ensuring an equal distribution of the selected classes in each split.
The spatial splits are used to evaluate the performances of each model on geo-
graphically distinct areas and to simulate real-world scenarios, e.g . applications
to unseen locations. The splits that we used are illustrated in Appendix A. A tile
is skipped between the three sets to prevent data leakage, ensuring the model
avoids spatial autocorrelation between adjacent areas. For our experiments, we
use an image size of 768× 768× 3, providing sufficient spatial context to include
multiple tree crowns and to learn relationships between different regions in the
image. The labels are annotated using recordings from September 2 as reference
(representing a date before most leaves change colour), which is also used as the
input for our single-image models. For the models that take time series as in-
put, we select one image from June, two from September, and one from October
to reduce redundant information, as most phenological changes occur between
September and October.

As a design choice, we ignore classes with less than 50 occurrences throughout
the dataset, leaving us with a total of 15 classes, excluding the background class.
This ensures the selected classes have sufficient samples in each split in order
to effectively train and evaluate each model. The tree species distribution is
illustrated in Figure 2.

The dataset is split into train, validation and testing sets with 63%, 16%,
and 21% of the samples, respectively. Given that this dataset has a mix of coarse
(genus) and fine-grained (species) labels, we leverage this information to create
a complete taxonomy of the classes used, as seen in Figure 3.

This taxonomic hierarchy is incorporated in our proposed loss function as
detailed in Sec. 4.3.

4 Methods

In this section, we provide more details on the methods used to perform semantic
segmentation either with single image or time series inputs. We will also describe
the proposed hierarichal loss used to exploit the tree label taxonomy.

4.1 Single image semantic segmentation

For single image semantic segmentation, we evaluate three state-of-the-art ar-
chitectures: U-Net [53], DeepLabv3+ [13], and Mask2Former [14]. U-Net utilizes
an encoder-decoder structure with skip connections, allowing for precise local-
ization. DeepLabv3+ employs atrous convolutions and atrous spatial pyramid
pooling to capture multi-scale context. Mask2Former combines a CNN backbone
with a transformer decoder, using masked attention to focus on relevant image
regions. We experiment with various backbone networks, including ResNet-34,
ResNet-50, and ResNet-101 for U-Net and DeepLabv3+, and Swin-T and Swin-S
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Fig. 2: Distribution of the selected
classes in the dataset. We observe that
there is a substantial difference in the fre-
quency of occurrence of each tree species.
The common and scientific names used for
the abbreviations are detailed in Table 1.

Common Name (Scientific Name) Abbreviation

Balsam fir (Abies balsamea) ABBA
Striped maple (Acer pensylvanicum) ACPE
Red maple (Acer rubrum) ACRU
Sugar maple (Acer saccharum) ACSA
Maple (Acer sp.) Acer
Swamp birch (Betula alleghaniensis) BEAL
Paper birch (Betula papyrifera) BEPA
American beech (Fagus grandifolia) FAGR
Tamarack (Larix laricina) LALA
Dead tree DEAD
Spruce (Picea sp.) Picea
Eastern white pine (Pinus strobus) PIST
Aspen (Populus sp.) Populus
Northern white-cedar (Thuja occidentalis) THOC
Eastern hemlock (Tsuga canadensis) TSCA

Table 1: Tree species names and
their abbreviations. The color we use
to depict each species is highlighted in the
second column and is consistent for all the
plots and figures.

for Mask2Former. Detailed architecture descriptions are provided in Appendix
B.1.

4.2 Time series semantic segmentation

We compare various methods for semantic segmentation with time series data,
including 3D-UNet [15] and U-TAE [23] specialized for SITS. 3D-UNet extends
the U-Net architecture to 3D, making it suitable for volumetric data and U-
TAE employs a temporal attention encoder to capture temporal dependencies
in satellite image time series. Detailed descriptions of these methods are provided
in Appendix B.2.

Processor module Our proposed Processor module is composed of 3D convo-
lutions and designed to extract spatio-temporal features from time series data,
enabling the use of pretrained models for semantic segmentation. The motiva-
tion behind the Processor architecture is to capture spatio-temporal patterns
while maintaining the spatial resolution to fit established models pretrained on
single-image datasets. This approach differs from task-specific models relying on
specialized architectures for processing time series data in particular contexts,
such as land use and land cover mapping [23,60].

The module is composed of two 3D convolutional layers. The first layer has a
kernel size of 3× 3× 3, followed by a second layer with a kernel size of 2× 3× 3.
The padding in these layers is set to (0, 1, 1), and the number of output channels
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Populos ACPE ACRU ACSA Acer Species BEAL BEPA FAGR LALADEAD PIST Picea Species ABBA THOC TSCA

Populus Acer Betula Fagus LarixDEAD Pinus Picea Abies Thuja Tsuga

Non-conifer DEAD Conifer

Fig. 3: Taxonomic hierarchy of tree species. The hierarchical structure is visually
represented using a tree diagram. Blue nodes represent the species level, the most
fine-grained classification in the hierarchy. Red nodes denote the genus level, which
groups together closely related species. Finally, green nodes group the higher-level
taxon, the broadest classification level, which encompasses multiple genera and families.
This structure of labels allows the models to learn more comprehensive relationships
between different tree species at multiple levels of granularity. The full names of each
abbreviation are detailed in Table 1.

is set to 32 and 64 respectively. This configuration will collapse the temporal
dimension of the input while simultaneously increasing the number of channels.

Since the kernel sizes are designed for a specific time series length, they
must be adjusted for a different application, yet our lightweight module is easily
trainable from scratch.

Formally, let x ∈ RT×C×H×W be an input time series, where T is the length
of the time series, C the number of channels of each image, H and W their respec-
tive height and width dimensions. Our Processor module pΘ(.), parameterized
by Θ, can be used prior to any semantic segmentation model fθ parameterized
by θ, via fθ(pΘ(x)).

To evaluate the effectiveness of our approach, we used the Processor alongside
U-Net and DeepLabv3+. The results of our experiments are detailed in Section
6.

4.3 Hierarchical loss

This section details the proposed hierarchical loss that leverages information
about taxonomic hierarchies of tree species, genus and families. The dataset
detailed in Section 3 groups a mix of finer (species) and coarser (genus) level
labels. The taxonomic structure of these labels offers an opportunity to train a
model while benefiting from such hierarchical structure.

To exploit this hierarchy, we extend each label to multiple levels: species,
genus, and higher-level taxon. The taxonomic hierarchy is illustrated in Figure 3
and a visual example of these labels is illustrated in Appendix A.
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During training, the model predicts only the species level labels for each
pixel. These softmax probabilities at species level are then aggregated according
to our knowledge of the label taxonomies (see Figure 3) to generate first the
genus level predictions (see Equation 3) and second the higher-level predictions
(see Equation 5).

Note that our implementation of the hierarchical loss differs from certain
related work presented in Section 2, where classes at all levels are predicted
separately to compute the loss [62].

Formally, let x ∈ RC×H×W be a training example, yS ∈ {0, 1}S×H×W its
one-hot ground truth where S is the number of classes at the species level, and
fθ(x) = pS the associated predictions. The cross-entropy loss function at the
species level is defined as normal via:

Lspecies := − 1

S

S∑
s=1

∑
(h,w)∈Ω

yS [h,w, s]log pS [h,w, s], (1)

where Ω = [[1, H]]× [[1,W ]]. The cross-entropy loss function at the genus level is
then computed using the ground truth and predictions at the species level, as:

Lgenus := − 1

G

G∑
g=1

∑
(h,w)∈Ω

yG[h,w, g]log pG[h,w, g] (2)

= − 1

G

G∑
g=1

∑
(h,w)∈Ω

[ Sg∑
s=1

yS [h,w, s]
]
log

[ Sg∑
s=1

pS [h,w, s]
]
, (3)

where G is the number of classes at the genus level and Sg is the number of
classes at the species level corresponding to a given genus class g. In the same
vein, the cross-entropy loss function at the higher-level taxon is also obtained
via the ground truth and predictions at the species level, as:

Ltaxon := − 1

T

T∑
t=1

∑
(h,w)∈Ω

yT [h,w, t]log pT [h,w, t] (4)

= − 1

T

T∑
t=1

∑
(h,w)∈Ω

[ Gt∑
g=1

Sg∑
s=1

yS [h,w, s]
]
log

[ Gt∑
g=1

Sg∑
s=1

pS [h,w, s]
]
, (5)

where T is the number of classes at the higher-level taxon and Gt the number
of classes at the genus level corresponding to a given higher-level class t.

The hierarchical loss function is given as:

LHLoss = λ1 · Lspecies + λ2 · Lgenus + λ3 · Ltaxon, (6)

where λ1, λ2, and λ3 are the weights for the species, genus, and higher-level
taxon losses respectively, and Lspecies, Lgenus, and Ltaxon are the corresponding
cross-entropy losses.
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Model Backbone Dice+CE HLoss Mask2Former Loss

DeepLabv3+

ResNet34 52.30 ± 0.40 53.36 ± 0.09 —
ResNet50 53.14 ± 0.08 53.63 ± 0.20 —
ResNet101 53.87 ± 0.45 54.16 ± 0.38 —
ResNet50† 43.19 ± 0.45 43.20 ± 0.06 —

U-Net

ResNet34 53.00 ± 0.10 53.10 ± 0.16 —
ResNet50 53.30 ± 0.16 53.53 ± 0.46 —
ResNet101 53.90 ± 0.18 54.31 ± 0.48 —
ResNet50† 42.66 ± 0.38 42.43 ± 0.96 —

Mask2Former Swin-t†† — — 47.41 ± 0.50
Swin-s†† — — 46.61 ± 0.10

Table 2: Comparison of single image methods with different losses and back-
bones. Performances are compared with IoU averaged over all the classes of the dataset
(mIoU) for single image models. The † indicates models trained from scratch without
using ImageNet weights [18]. The †† indicates Swin-based models using weights from
MS-COCO dataset [39]. All the results are averaged over three seeds and the best
results for a particular backbone is shown in bold text. The best model overall is high-
lighted in red.

We set empirically λ1 = 1, λ2 = 0.3, and λ3 = 0.1 since we observed that
giving more weight to the species-level loss helps the model to prioritize the
fine-grained predictions while still benefiting from the hierarchical information.
However, we have not attempted to fully optimize these values.

5 Experiments

5.1 Experimental setup

All methods detailed in Section 4 have been trained with normalized input data,
either with the means and standard deviations of our dataset to train models
from scratch, or with statistics of the datasets used for pretraining for models
based on MS-COCO and ImageNet weights.

We train our models either using our proposed hierarchical loss, noted HLoss,
and described in Section 4.3, or using a combination of dice and cross-entropy
losses, noted Dice+CE. The performances of our models are evaluated with the
Intersection over Union (IoU) metric, also known as the Jaccard index, mea-
suring the overlap between the predicted and ground truth masks. The mean
IoU (mIoU) is computed by averaging the IoU scores across all classes. A more
detailed explanation of our training process and hyperparamter choices is give
in Appendix C.

5.2 Experiment Configuration

We conduct a comprehensive set of experiments to thoroughly evaluate the per-
formances of the considered methods:
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(a) A sample image. (b) Annotation. (c) Dice+CE (d) HLoss

Fig. 4: Qualitative results of the Dice+CE loss versus HLoss. This example
compares the best-performing Processor+UNet (ResNet101) models trained with the
Dice+CE loss and the proposed Hierarchical Loss (HLoss). First, 4a shows a sample
image from the sequence, while 4b displays the corresponding ground truth annota-
tion. Then, 4c depicts the segmentation output obtained by the model trained with the
Dice+CE loss, and finally 4d illustrates the output from the model trained with HLoss.
The colors of the labels and predicted segments correspond to specific tree species, as
indicated by the legend in Table 1. Upon closer inspection of the regions highlighted
by the cyan circle ( ), the model trained with the Dice+CE loss exhibits some con-
fusion among classes, whereas the model trained with HLoss demonstrates improved
discrimination between classes.

– We compared models using either single-image or time series inputs to eval-
uate the contribution of the phenological information on the tree species
segmentation task. The time series are composed of images at four different
periods of the year (see Section 3). Note that both methods predict segmen-
tation masks corresponding to a single image.

– We compared models with two different loss functions to demonstrate the
effectiveness of leveraging taxonomic information through the HLoss against
a standard combination of loss functions (Dice+CE).

– We conduct ablation studies to investigate the impact of different pretrained
backbones on the segmentation performances. For the CNN-based mod-
els, we experiment with ResNet-34, ResNet-50, and ResNet-101 backbones,
whereas for the Mask2Former model, we use Swin-T and Swin-S backbones
[40].

The results of these experiments are discussed in Section 6 where we compare
results both quantitatively and qualitatively.

6 Results

6.1 Single-image input for semantic segmentation

For the single-image segmentation model, we compare the performances of DeepLabv3+
and U-Net architectures with ResNet backbones of varying depths (ResNet-34,
Resnet-50, ResNet-101) and the Mask2Former architecture with the Swin-T and
Swin-S backbones.
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Model Backbone Dice+CE HLoss

DeepLabv3+ + Processor

ResNet34 53.32 ± 0.04 53.43 ± 0.34
ResNet50 53.12 ± 0.34 54.05 ± 0.31
ResNet101 53.46 ± 0.53 54.13 ± 0.11
ResNet50† 48.01 ± 0.37 50.30 ± 2.82

U-Net + Processor

ResNet34 53.37 ± 0.53 53.60 ± 0.31
ResNet50 53.80 ± 0.15 54.12 ± 0.15
ResNet101 54.46 ± 0.39 54.88 ± 0.20
ResNet50† 49.00 ± 0.19 49.35 ± 0.25

UNet 3D† — 37.74 ± 0.28 41.38 ± 0.14

U-TAE† — 35.59 ± 1.03 39.78 ± 2.58
Table 3: Comparison of time-series methods with different losses and back-
bones. Performances are compared with IoU averaged over all the classes of the dataset
(mIoU) for single image models. The † indicates models trained from scratch. All the
results are averaged over three seeds and the best results for a particular backbone is
shown in bold text. The best model overall is highlighted in red.

As seen in Table 2, both DeepLabv3+ and U-Net architectures show consis-
tent increase in performances with increasing backbone size where the ResNet-
101 model achieving the highest mIoU score. Moreover, the proposed HLoss con-
sistently outperforms the Dice+CE loss across all backbones and architectures,
demonstrating the effectiveness of leveraging taxonomic information.

We also observe in Table 2 that training models from scratch results in sig-
nificantly lower mIoU scores compared to using pretrained ImageNet weights,
highlighting the importance of transfer learning. The best performing single-
image model is the U-Net with ResNet101 backbone. The Mask2Former mod-
els, trained with the loss of the original implementation and with pretrained
weights from the MS-COCO dataset, perform better than the models trained
from scratch, however their performance is not comparable to the CNN-based
architectures.

6.2 Time series input for semantic segmentation

For time series inputs, we make use of the Processor module, detailed in Sec-
tion 4.3, to extract spatio-temporal features and evaluate its performances with
DeepLabv3+ and U-Net architectures. Amongst the time series models, we ob-
serve a similar pattern in Table 3 as the single-image ones with the benefical
impact of using HLoss during training outperforming models trained with the
Dice+CE loss. Qualitative results comparing HLoss with Dice+CE loss are illus-
trated in Figure 4 where HLoss demonstrates the ability to better discriminate
between classes. Models trained using the Dice+CE loss exhibit some confusion
among classes. Using HLoss would reduce confusion amongst classes that do
not belong in the same genera or higher-level taxon as the model is penalized
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for incorrect predictions at all levels. The U-Net+Processor with ResNet-101
backbone trained with HLoss achieves the best mIoU score amongst all mod-
els. Furthermore, the time series models slightly outperform their single-image
counterparts, indicating the importance of leveraging phenological patterns by
incorporating temporal information for tree species segmentation.

Class Processor + U-Net U-Net

Non-Coniferous Trees

Populus 78.49 74.89

ACPE 29.64 29.74

ACRU 57.51 55.84

ACSA 46.56 44.30

BEAL 63.00 62.06

BEPA 72.55 71.16

FAGR 55.69 56.76

Coniferous Trees

PIST 75.50 77.89

Picea 60.57 60.82

ABBA 62.35 64.15

THOC 59.73 59.68

TSCA 69.84 57.75

LALA 76.68 76.60

Others

DEAD 43.38 46.57

Overall results 54.88 ± 0.20 54.31 ± 0.48

Fig. 5: The table shows the IoU for the
individual classes for our best-performing
Processor + U-Net and U-Net models, both
with ResNet-101 as backbone. The classes
are grouped into non-coniferous and conif-
erous categories, with the color shown for
each class corresponding to the color code
in Table 1. The last row presents the met-
rics from Table 2 and Table 3 as a reference.
These metrics represent the average perfor-
mance across all classes over three seeds,
not the average of the values shown in this
table. We observe that incorporating time-
series data improves the segmentation per-
formance for most of the individual tree
species. This performance gain is more pro-
nounced for non-coniferous trees.

To gain a deeper understanding of
how leveraging time series data affects
the performance of our models for
individual species, we conduct a de-
tailed analysis of the class-wise results
for our best-performing single-image
and time series models. For the single-
image model, we select the U-Net ar-
chitecture with a ResNet-101 back-
bone, while for the time series model,
we choose the Processor+U-Net archi-
tecture, also with a ResNet-101 back-
bone. This allows for a fair compar-
ison between the two approaches, as
the main difference lies in the in-
corporation of temporal information
through the Processor module. Table
5 presents the class-wise Intersection
over Union (IoU) scores for both mod-
els, with the classes grouped into non-
coniferous and coniferous categories.
Note that we omit a class from this
analysis: “Acer sp.”, a class composed
of trees belonging to ACPE, ACRU,
or ACSA that have not been assigned
a fine-grained label by the annotators
due to low confidence.

The results show that the time
series model consistently outperforms
the single-image model across nearly
all non-coniferous classes. Even in
the few instances where the single-
image model achieves a slightly higher
IoU, the performance gap is minimal.
This finding aligns with our hypothe-
sis that incorporating time series data
allows the models to better capture
and exploit the phenological changes
exhibited by different tree species, particularly those that undergo distinct color
changes during the fall season. By leveraging this temporal information, the
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(a) A sample image. (b) Annotation. (c) Results with SI (d) Results with TS

Fig. 6: Qualitative results of the single-image versus time series inputs. This
example compares the best-performing models with single-image (SI) and time series
(TS) inputs for tree species segmentation. The Processor+UNet (ResNet101) architec-
ture, trained with the proposed Hierarchical Loss (HLoss), achieves the highest mIoU
score according to Table 3. First, 6a shows a sample image from the sequence, while 6b
displays the corresponding ground truth annotation. Then 6c depicts the segmentation
output obtained by the single-image model, and finally 6d illustrates the output from
the time series model. The colors of the labels and predicted segments correspond to
specific tree species, as indicated by the legend in Table 1. Upon comparing the results,
we observe that the time series model consistently outperforms the single-image model
in correctly predicting the classes. In the instance highlighted by the cyan circle ( ),
the time series model accurately identifies the Swamp Birch, while the single-image
model misclassifies it as Red Maple.

time series model is able to more accurately identify and distinguish between
the various non-coniferous species.

In contrast, the performance differences between the single-image and time
series models are less pronounced for the coniferous classes. Both models demon-
strate strong performances in this category, with the most significant improve-
ment for the time series model observed in the TSCA class. The single image
model suffers from confusion between the classes Eastern hemlock (TSCA) and
Eastern white pine (PIST) which does not affect the time series model as it
takes in multiple input images with different lightning and acquisition angles.
This suggests that even though phenological changes in coniferous trees may
be less informative for species identification compared to their non-coniferous
counterparts, the information from the image time series still helps the model
identify the classes better.

An example of the results comparing single-image and time series models
is illustrated in Figure 6, where using temporal information helps the model
differentiate between tree species that undergo senescence at slightly different
times. Red maple trees are among the earliest trees to show color changes in
the fall, and the single-image model misclassifies a Swamp Birch as Red Maple.
This misclassification can be attributed to the lack of temporal context, which
is necessary to understand the correlation between tree species and the timing
of their senescence.
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7 Conclusion

In this work, we addressed tree species segmentation using aerial image time
series, demonstrating the advantages of incorporating temporal information for
accurate species identification. We introduced a lightweight Processor module for
extracting spatio-temporal features and a hierarchical loss function leveraging
taxonomic structure, both enhancing existing segmentation architectures. While
our Processor module is designed for a fixed number of time steps, it offers a
simple yet effective approach to leveraging temporal information in tree species
segmentation. Future work could explore increasing its flexibility for varying
temporal resolutions. Our methods have significant implications for forest mon-
itoring and biodiversity conservation, enabling accurate mapping of tree species
composition. This work demonstrates the potential of deep learning and time se-
ries analysis in advancing forest ecosystem understanding and preservation. Fu-
ture research could explore additional data modalities and extend these methods
to other applications in forest ecology and management, further contributing to
global environmental efforts.
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