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Fig. 7: Spatial splits of the dataset. The image on the left depicts the entire
region where the aerial imagery was captured, while the image on the right shows
the different subregions used to train, evaluate and test models.The training region is
represented by , the validation region in , and the test region in . To prevent data
leakage between the subsets, a buffer tile is omitted between the adjacent regions. This
spatial partitioning ensures that the model’s performance is assessed on geographically
distinct areas, simulating real-world scenarios where the model would be applied to
unseen locations.

(a) Image (b) Species (c) Genus (d) Higher-level

Fig. 8: Example of the proposed three-level hierarchical label structure.
The labels are concatenated to form semantic segmentation masks where each channel
correspond to a specific taxonomic level: species 8b, genus 8c and higher-level taxon
8d. In this example, there are three classes at the species and genus level. However, the
higher-level taxon only has two classes due to the aggregation of different trees under
one class. Note that the colors used in this image do not conform to the color code
shown in Table 1.

A Dataset

The Figure 7 shows the training, validation and test split used in our dataset.
This has been carefully created to avoid data leakage between the split. Figure
8 shows an example of the hierarchical labels used for training.



TreeSeg-AerialTS 21

B Methods

The single image semantic segmentation experiments are conducted with diverse
methods detailed in the following sections.

B.1 Single image semantic segmentation

U-Net U-Net [53] is a widely adopted convolutional neural network (CNN)
architecture [19, 20, 38] designed for efficient image segmentation tasks. The
architecture consists of an encoder path and a decoder path, which together
form a U-shaped structure. The encoder path follows the typical structure of
a CNN, consisting of successive CNN layers, rectified linear units (ReLU), and
max-pooling operations, which gradually reduce the spatial dimensions while in-
creasing the number of feature maps. The decoder path utilizes transposed con-
volutions to upsample the feature channels, enabling the network to construct
segmentation maps at the original input resolution. The U-Net architecture uses
skip connections [27] to concatenate feature maps from the encoder path with
the corresponding upsampled feature maps in the decoder path.

DeepLabv3+ The DeepLabv3+ architecture [13] is an image segmentation
method built upon strengths of pyramid pooling with an encoder-decoder struc-
ture [12]. The encoder module of the DeepLabv3+ utilizes ‘dilated’ (also named
‘atrous’) convolutions to extract dense feature maps at multiple scales with larger
receptive fields while keeping the computation costs lower. The encoder incorpo-
rates atrous spatial pyramid pooling (ASPP), which applies atrous convolutions
with different dilation rates in parallel to further capture multi-scale context [12].

The decoder module of the DeepLabv3+ combines the output of the encoder
with low-level features from the encoder. This information is refined with 3× 3
convolutions to produce the final output segmentation maps.

Mask2Former The Mask2Former architecture [14] is a versatile method that
applies binary masks to focus attention only on the areas with foreground fea-
tures. The architecture consists of three parts: a backbone network, a pixel de-
coder, and a transformer decoder. Universal backbones (ResNet [27] or Swin
Transformer [40]) are used to extract features from the input image. The low-
resolution features are then used in a pixel decoder and upsampled to higher
resolution. The masked attention is finally applied on the pixel embeddings in
the transformer decoder.

To reduce the computational burden of using high-resolution masks, the
transformer decoder processes the multi-scale features per resolution one at a
time. The Mask2Former architecture performs well across a variety of tasks like
semantic, instance, and panoptic segmentation, which makes it a popular choice.
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B.2 Time series semantic segmentation

3D-UNet The 3D-UNet method [15] is composed of successive 3D convolutions
with a 3× 3× 3 kernel, followed by batch normalization and a leaky ReLU acti-
vation. The 3D-UNet downsampling part is composed of five blocks, separated
by spatial downsampling after the second and fourth blocks. The upsampling
part consists of 5 blocks with transposed convolutions while features from the
downsampling part are concatenated similarly than U-Net [53].

U-TAE The U-TAE architecture [23] has been introduced for panoptic segmen-
tation of SITS. It consists of three main parts: a multi-scale spatial encoder, a
temporal encoder, and a convolutional decoder that produces a single feature
map with the same spatial resolution as the input. The sequence of images is
processed in parallel by the spatial encoder, and the temporal attention encoder
(TAE) is applied at the lowest resolution features to generate attention masks.
These masks are interpolated and applied to each feature map, allowing the
extraction of spatial and temporal information at multiple scales. The decoder
uses a series of transposed convolutions, ReLU, and batch normalization layers
to produce the final feature map.

C Experimental Setup

For training our methods, we employ the Adam optimizer [34] for all models ex-
cept Mask2Former, which is trained with the AdamW optimizer [42] to maintain
consistency with the original training methodology. We trained all models with
an learning rate of 1e − 4 with exponential learning rate decay for 300 epochs.

We included rotation (in multiples of 90°) with horizontal flips as data aug-
mentation to enhance the diversity of the training data. The batch sizes used for
each model are detailed in Table 9. These were set to the largest size that could
fit within a NVIDIA RTX 8000 GPU.

Model Batch Size

U-TAE 4
Unet-3D 6
Processor+U-Net 16
Processor+DeepLabv3+ 16
U-Net 16
DeepLabv3+ 16
Mask2former 16

Fig. 9: Batch sizes used for training.

We train our models either using
our proposed hierarchical loss, noted
HLoss, and described in Section 4.3,
or using a combination of dice and
cross-entropy losses, noted Dice+CE.
The latter is a popular choice for seg-
mentation tasks since the dice loss
measures the overlap between the
predicted and ground truth masks,
while the cross-entropy loss quanti-
fies the dissimilarity between the pre-
dicted and true class probabilities. We
trained the Mask2Former model with
the loss function proposed by its au-
thors [14]. This loss function improves
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the training efficiency by randomly sampling a fixed number of points in the la-
bels and predictions.

The loss weighing scheme and other implementation details are kept consis-
tent with original implementation to ensure a fair comparison. Note that we did
not run Mask2Former with HLoss and Dice+CE loss as the training would be
much more computationally expensive, resulting in a smaller batch size.

The performances of our models are evaluated with the Intersection over
Union (IoU) metric, also known as the Jaccard index, measuring the overlap
between the predicted and ground truth masks. Letting A and B be two sets,
the IoU score is defined as:

IoU(A,B) :=
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
. (7)

The mean IoU (mIoU) is computed by averaging the IoU scores across all
classes. This metric provides a comprehensive assessment of the segmentation
performances of a model, taking into account both the precision and recall.


