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Introduction and Related Work

There are ample open-source wildlife image datasets taken by camera traps to be harnessed by ML researchers
for biology and conservation [16, 3? , 1], many of which are used as benchmarks for training large models
[9, 14, 11]. Camera traps effectively capture many species, including sensitive ones, in the same location
over long periods [17]. The geolocation of the photos has shown useful in providing additional context
when performing classification and improving identification accuracy [7, 2]. Therefore, it became common
for datasets to add such metadata into their annotations [3, 5, 10, 1]. However, this information poses
substantial risks of exposing sensitive species’ living habitat locations [15], and there have been cases of
informing poachers to locate them [20]. To protect this privacy information, two notable contributors of
wildlife datasets, Wildlife Insight by Google, and iNaturalist, attempted to protect against poachers by
obfuscating the geolocation of endangered species by averaging with other locations and truncating decimals
[1] or adding a radius of location accuracy [10]. However, little or no research has been conducted to
systematically study if wildlife geolocation information is safely protected.

Image geolocation prediction model predicts location by matching the input image features to the GPS
data features [6]. Camera trap images can be particularly vulnerable to image geolocalization models because
the datasets include multiple images taken in the same locations over different times, with a large proportion
of the images consisting of the surrounding environment, providing more information about a location than
a single image of a close-up view of an animal alone. In one attempt to evaluate this geolocation privacy
concern, Beery [4] assessed with PlaNet [21], which used a CNN structure, and concluded privacy was
preserved. However, as of 2024, with the development of ML models from CNN to Transformers[18], image
geolocalization models have since improved drastically [12, 6, 8]. In particular, GeoCLIP, using clip and
transformer [13], supports global-scale localization with the top 1 in street level (1km) photo geolocation
estimation on Im2GPS3k benchmark [19].

In this study, we will evaluate wildlife image geolocation privacy by applying GeoCLIP to predict the
geolocation of images in an open-source wildlife camera trap dataset and assess its accuracy by comparing
the results with their known locations.
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