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Abstract
This paper presents a transfer learning approach for data-efficient video-based multi-species wildlife animal
action recognition, using pre-trained models on human action datasets. It bridges the gap between the well-
studied human-focused video classification and under-investigated animal action recognition, largely limited
by insufficient structured, annotated data across animal species. By leveraging the SlowFast framework, a
state-of-the-art architecture for video classification, and conducting on a small sample of the Animal Kingdom
dataset, a benchmark on animal action recognition, the paper reveals a notable improvement in the mean Average
Precision (mAP) score, with much fewer training data, when fine-tuned on a model pre-trained with Kinetics-400
as compared to training from scratch or utilizing image-based model pre-trained on ImageNet. This research
demonstrated the promising nature of cross-domain transfer learning for video classification and has substantial
inspiration for advancing the understanding of animal behavior and biodiversity conservation.
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1. Introduction

Computer Vision has become invaluable in fostering global biodiversity conservation, through global-
scale camera-trap biodiversity monitoring [1][2] and through increasingly capable models and more
computational power available. The task of video classification, especially human action classification,
has gained significant attention among the computer vision communities [3][4][5]. While there have
been substantial advancements in human action recognition [6][7], the same cannot be said for animal
action recognition, primarily due to the limited availability of structured, annotated data for a wide
range of species [8]. This poses a significant challenge in developing generalized models for animal
action recognition across various species [9].

This paper aims to tackle animal action recognition in videos, focusing on developing a model
capable of identifying actions among a wide range of animal species with limited data. This can allow
wildlife researchers to focus more on analysis than manual data collections[10], and inspire further
studies for a deeper understanding of how and why animals behave [11]. Our primary focus will be to
explore whether leveraging pre-trained models on human actions can be an effective transfer learning
technique and improve performance when applied to animal action recognition, as opposed to training
from scratch. Specifically, with Facebook’s SlowFast Framework [12], a state-of-the-art architecture
specializing in video classification, two pre-trained models on Kinetics-400 and ImageNet using human
action datasets will be fine-tuned on wildlife animal videos with labeled actions. By utilizing pre-trained
models, we hope to use the knowledge acquired from the more extensive and diverse human action
datasets, thereby mitigating the impact of limited data availability and advancing the state-of-the-art in
multi-species action recognition.
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Figure 1: Training Pipeline: TheModel takes video frames as input, trains and fine-tunes on SlowFast architecture
attached to the final classifier layer with custom labels, and outputs a predicted action class with a confidence
score.

2. Related Work

In the literature, numerous approaches have been developed for action recognition in videos, such as
SlowFast [12], TimeSformer [13], and videoMAE [14]. However, these state-of-the-art models are all
trained on human datasets, such as Kinetics 400/600 [15], ActivityNet [16], and UCF [3], largely because
they are large-scale, structured, and accessible.

Current endeavors at animal action recognition, on the other hand, are limited. Research such as [17]
[18] [19] [20] extracted skeletons of the animals and made predictions based on the relative motions of
the joints, a popular technique called pose estimation. However, such an approach can be limited when
applied to wildlife camera trap data, because different species would have drastically different anatomy
and movement patterns, and some actions can also be context-based [8]. There have not been notable
attempts to create a generalized, foundational model across species using video inputs.

Furthermore, most animal datasets contain only a few types of animals such as cows [21], mice [18],
monkeys [22], apes [20] and fish [23], or a specific animal class such as mammals [24], and usually in
a controlled or lab environment. The Animal Kingdom dataset [8] stands out as the largest existing
benchmark on multi-species action recognition for wildlife animals. The dataset contains 50 hours of
video footage with annotations of 140 action classes across 850 species. On average, a video lasts 6
seconds, with a range between 1 to 117 seconds, and always contains at least one animal. This dataset
stands out as a suitable candidate for building a generalized animal action recognition model.

This paper seeks to bridge the gap between the advancement of human video classification models
and animal behavior analysis, by leveraging an existing model trained on human actions to create a
generalized model for wildlife animals.

3. Proposed Approach

In this paper, we presented comparisons between training on the animal action dataset from scratch,
fine-tuning a model pre-trained with human actions, and fine-tuning a model pre-trained with generic
image-based object identification data. We also investigated model performance using fewer training
data sizes, currently the bottleneck for biodiversity AI research [9].

We used the Animal Kingdom dataset as the training dataset. To limit the scope of the action
recognition task, we use videos with only one action label and one animal species per clip, as opposed to
multiple labels or species in one clip. Wildlife conservation researchers spend much of their time in the
field worldwide with limited computing power and data storage resources. Inspired by the circumstance,
we filter the training data to have only the 9 most labeled actions in the dataset defined in Table 3. Each
class consists of 100 randomly selected training videos, 10 validation videos, and 10 test videos.

Figure 1 shows the training pipeline using the SlowFast framework. Videos are extracted into
individual image frames to feed into the SlowFast architecture, where they go through two parallel
convolution neural networks (the Slow pathway and the Fast pathway) [12]. At the end, we add a
classifier layer (and discard the original classifier layer if using pre-trained models) that outputs the
predictions of the nine action labels. We first trained a model from scratch (random initialization of
weights) as our baseline result. Then we obtained weights of a model pre-trained on Kinetics-400 (K400,



Model 10/class 100/class

From Scratch 0.27211 0.32320
Pre-trained K400 0.45641 0.53707

Pre-trained ImageNet 0.18941 0.33044

Table 1
Pre-trained K400 model shows the best mAP score in both cases training on 10 and 100 videos per class.

the human action video dataset) and used the same training dataset and configurations to fine-tune the
weights and compare their performances. Furthermore, to show how temporal human actions can be
more useful as a pre-training dataset than generic visual feature knowledge, we fine-tuned another
model pre-trained with ImageNet (a large image dataset for generic object detection) [25] and compared
their performances. Lastly, to investigate the performance with limited training data size, the models
were trained with only 10 training videos and 5 test videos per class, and then compared with ones
utilizing all 900 training videos. Following [8] and [26], mean Average Precision (mAP) is used as the
evaluation metric for each model. It is computed as the unweighted mean of all the per-class average
precision (AP), bounded between 0 and 1 [27]. For each test video, the model predicts one or more
action labels, each associated with a confidence score. The evaluation then takes the predictions and
the confidence scores to compute the Average Precision across all predictions and videos. Formally, AP
is calculated as follows:

𝐴𝑃 =
𝑁
∑
𝑖=1

𝑝(𝑖)Δ𝑟(𝑖) (1)

where N is the number of predictions, p(i) is the precision, and r(i) is the recall [5]. mAP is then
calculated by taking the mean of these AP values as follows:

mAP = 1
𝑁

𝑁
∑
𝑖=1

AP𝑖 (2)

where N is the number of classes.

3.1. Model Setup

Overall, the models underwent supervised learning with the labeled training data. In the experiment,
the videos were conformed with the required 30 frames per second for the SlowFast framework and
extracted into individual image frames. For each input clip, SlowFast processes with a spatial crop size
of 256, a video sampling rate of 2, and 8 frames per clip. Then we performed data augmentation on the
sampled frames, specifically, random horizontal flip and adding Principal Components Analysis (PCA)
jittering with scales [256, 340]. The SlowFast architecture is set up where the inverse of the channel
reduction ratio between the Slow and Fast pathways is 8, the frame rate reduction ratio between the
Slow and Fast pathways is 4, the ratio of channel dimensions between the Slow and Fast pathways is 2,
and Kernel dimension used for fusing information from Fast pathway to Slow pathway is 7. Weights
of both pre-trained models are obtained from SlowFast’s official GitHub repository. Then each model
was trained with a Stochastic Gradient Descent optimizer, a dropout rate of 0.5, a cross-entropy loss
function, a batch size of 8, and a Sigmoid function on the activation layer for the output head. The
learning rate started as 0.00085 and warmed up linearly in each iteration until reaching 0.0375 on the
fifth epoch, and kept constant at 0.0375 for the remaining epochs. The total number of epochs to train
is 20.



Video

Ground Truth Swimming Eating
K400 Swimming Keeping Still

From Scratch Jumping Eating

Table 2
Top-1 Prediction on two examples videos by K400 model and model from scratch. On the video of otters
swimming, K400 correctly identifies while the one from scratch confuses the up/down wavy motion
with jumping. In the Kangaroo video, the kangaroos displayed no motion and K400 misinterpreted it as
keeping still.

4. Experimental Results

4.1. Quantitative Results

table 1 shows the result of the experiments, where the overall best-performing model is the one pre-
trained on K400 with 100 videos per action class. First, the mAP score is higher for the K400 pre-trained
model than from scratch, demonstrating that transfer learning from K400 is effective. On the other
hand, the mAP of the ImageNet model shows an insignificant increase from the model from scratch,
much less than that of the K400 model. It suggests that the action recognition model benefits more
through transfer learning from a model with temporal understanding than a generic image classification
model. Furthermore, the K400 model trained with merely 10 videos per class still yields a higher mAP
than training from scratch with 100 videos per class, demonstrating its data-efficient learning nature.

fig. 2 shows the confusion matrix produced by each model trained with 100 videos per class. In
fig. 2d, the K400 model confusion matrix exhibits a darker shade along the diagonal than the other two
matrices, indicating a higher number of true positives and true negatives. This suggests the model’s
ability to make accurate predictions across different classes.

4.2. Qualitative Analysis

While the K400 model outperforms quantitatively, its qualitative performance reveals areas where it
excels and where it falls short. To demonstrate, both the model from scratch and the K400 model were
applied to unseen videos. In table 2, the Otter video is an example where the K400 pre-trained model
predicted correctly but the one from scratch predicted wrong. The K400 dataset contains 2588 footage
labeled as swimming [15], and the pre-trained model may have learned to identify the water and waves
in the video and associate them with the action swimming. Yet the model from scratch had a harder
time identifying the otters’ movements (moving up and down in the water) in the video, which could
be disguised as jumping. fig. 2b shows the model from scratch often confuses videos with “swimming”
as the true label with “jumping” and “flying”. This confusion also occurs in the K400 model, but with
less frequency (0.1 compared to 0.2 for both classes) [fig. 2d].

On the other hand, the Kangaroo video demonstrates the reverse, where knowledge of human actions
did not help. In the Kangaroo video, the animals barely moved in the video frames, and the kangaroos
eating looked nothing like humans eating. For this video, the K400 model was confused, and concluded
the result as “keeping still”. However, the model trained from scratch, which may focus more on animals
and their actions, demonstrated a correct prediction.



(a) Confusion Matrix for Model Trained from Scratch.

(b) Top Predictions from Model Trained from
Scratch for videos with Swimming as Ground
Truth. Swimming action is often confused with
Flying and Jumping.

(c) Confusion Matrix for Model pre-trained with Ima-
geNet.

(d) ConfusionMatrix forModel pre-trained with Kinetics-
400.

Figure 2: (a,c,d) The K400 model displays darker shades along the diagonal than other models, showing
more True Positives and True Negatives. (b) Some action predictions may be confused with similar
motions.

5. Conclusion

This paper demonstrates the effectiveness and data efficiency of transfer learning from the K400 human
action videos to the multi-species animal action recognition task, which outperforms ImageNet and
models trained from scratch. Future work includes implementing more advanced video classification
frameworks, including TimeSformer and videoMAE, incorporating a wider range of action classes,
multi-action labels, and multiple animal species in the same frame, and evaluating the K400 model more



comprehensively with more test data to reveal actions it excels and confuses the most.
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Category Action Description
General Keeping still Animal makes no or

minimal movement
(i.e., animals staying
still and alert)

Feeding Eating Include feeding, graz-
ing, and gnawing

Sensing Attending Animal locates a
stimulus of potential
interest, and directs
its attention (eyes,
ears, face) towards
it, and often keeping
very still to observe
the situation

Movement Swimming Animal swims in the
water (e.g. fish), or
on the surface of wa-
ter (e.g. water birds)

Movement Jumping Animal makes large
jumping movement
from one spot to
another (e.g. from
lower to higher
grounds), or on the
same spot

Movement Walking Animal moves from
one spot to another
in a slow pace

Movement Running
Movement Flying
Communication Chirping

Table 3
Descriptions of the 9 most labeled actions used for training from the Animal Kingdom Dataset [8]
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