
KAN-Mixer: Kolmogorov-Arnold Networks for Gene
Expression Prediction in Plant Species

Jin Gao1 , Juntu Zhao1⋆ , Keyu Li1⋆ , and Dequan Wang1,2†

1 Shanghai Jiao Tong University
2 Shanghai Artificial Intelligence Laboratory

Abstract. Understanding the intricate relationships between cis-regulatory ele-
ments and gene expression is crucial for decoding genetic regulation in ecological
systems. In this study, we introduce a novel application of Kolmogorov-Arnold
Networks (KANs) for predicting gene expression across diverse plant species,
including Arabidopsis thaliana, Solanum lycopersicum, Sorghum bicolor, and
Zea mays. Our model, named KAN-Mixer, utilizes k-mers as inductive biases
to capture biologically relevant patterns in nucleotide sequences. By employing
token embeddings and mixer architectures, KAN-Mixer enhances both the inter-
pretability and usability of KANs. Our results indicate that KAN-Mixer achieves
comparable accuracy to ConvNet-based approaches while offering superior in-
terpretability, making it a robust tool for ecological data analysis in a variety of
environments.
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1 Introduction

Gene expression regulation is orchestrated by complex interactions between proteins
and nucleic acids, particularly DNA and RNA. A key element in this regulation is
cis-regulatory elements (CREs), short DNA sequences near a gene’s genomic region
recognized by transcription factors. At the transcript level, RNA processing is regulated
by nucleotide sequences binding protein factors, forming a sophisticated gene regulatory
network. Understanding these regulatory mechanisms is essential for comprehending
ecological dynamics across diverse environments.

Current experimental molecular biology techniques often provide a limited under-
standing of these nucleotide codes due to their reductionistic nature. Consequently, a
holistic approach, such as deep learning, can offer substantial insights into the plant
gene regulatory code. With the increasing availability of genomic data, deep learning
methods can more effectively annotate and functionally characterize CREs. System-
atic investigations of sequence-to-regulation relationships across various plant species
and regulatory domains are essential, as genome-scale identification and annotation of
cis-regulatory sequence features remain largely unexplored, especially considering the
diverse ecological systems ranging from tropical forests to Arctic tundras, and urban to
rural settings.
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Deep learning applications in exploring gene regulatory networks, particularly for
annotating and functionally characterizing CREs, require a nuanced understanding of
neural network architectures, their inductive biases, and interpretability. Multi-layer
perceptrons (MLPs) [12], known for their universal approximator capability, excel at
learning complex representations but struggle with tasks involving spatial or temporal
dependencies, such as identifying CREs in genomic sequences. Their minimal inductive
bias requires significant data to uncover relevant features, often leading to overfitting
and making the models challenging to interpret.

Inspired by the Kolmogorov-Arnold representation theorem [14] [3], Kolmogorov-
Arnold Networks (KANs) [19] replace the fixed activation functions of MLPs with
learnable activation functions on edges, parameterized as splines. This change allows
KANs to outperform MLPs in both accuracy and interpretability. Both theoretically and
empirically, KANs exhibit faster neural scaling laws compared to MLPs, suggesting a
more efficient learning process. For interpretability, KANs offer intuitive visualization
and easy interaction, which is particularly beneficial in scientific research. However, to
ensure interpretability, the overly long gene sequences must be flattened and input into
the KANs, which introduces a significant parameter burden. This has become a major
obstacle hindering the widespread application of KANs in the processing of genetic data.

In this paper, we demonstrate the interpretable use of KANs for gene expression
prediction in four plant species Arabidopsis thaliana, Solanum lycopersicum, Sorghum
bicolor, and Zea mays. We present KAN-Mixer, a straightforward yet interpretable model
for predicting gene sequence-expression relationships. Using k-mers as an inductive bias
for gene sequence analysis is analogous to applying convolutional filters in convolutional
neural networks (ConvNets) for visual recognition. K-mers, which are sequences of fixed
length k, encapsulate significant biological signals by assuming that closely positioned
nucleotides and recurring patterns hold important biological relevance. Specifically, we
propose token embeddings for gene sequences and constrain the modeling of the KANs
at the token level, enhancing the usability of KANs while preserving interpretability.

Inspired by the MLP-Mixer architecture [24], we utilize mixer architectures to
facilitate communication between different channels and tokens. KAN-Mixer emphasizes
specific sequence motifs and their hierarchical organization, offering more insightful and
explainable results compared to MLPs and ConvNets. This aligns with the ecological
objectives of genomics research, where understanding the underlying mechanisms and
functional implications of CREs necessitates models that provide clear and biologically
interpretable insights. Our experiments demonstrate that KAN-Mixer is at least as
effective as existing ConvNet-based baselines [21], with the added benefit of enhanced
interpretability.

By providing a robust and interpretable model for gene expression prediction, KAN-
Mixer contributes to the broader goal of advancing ecological research through the
integration of cutting-edge computer vision techniques. Understanding gene regulatory
mechanisms across diverse plant species not only enhances our knowledge of fundamen-
tal biological processes but also informs conservation strategies, agricultural practices,
and ecological management. This work highlights the potential for deep learning models
to bridge the gap between complex genetic data and practical ecological applications,
fostering a deeper connection between the fields of computer vision and ecology.
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Fig. 1: KANs’ notable interpretability makes it suitable for gene sequence processing, yet it strug-
gles with extremely long gene sequences due to significant parameter burdens and performance
declines. Inspired by convolutional inductive biases, we introduce KAN-Mixer with Token Embed-
ding to enhance KANs usability in gene sequence analysis without compromising interpretability.

2 Related Work

MLPs & KANs Multi-layer perceptrons (MLPs) [7, 11, 12, 25] are widely recognized as
fundamental components of contemporary deep learning models. Despite their prevalent
use, MLPs have significant limitations, particularly in terms of interpretability [6]. Re-
cently, Kolmogorov-Arnold Networks (KANs) [18,19] have been introduced, addressing
this issue by employing learnable activation functions directly on the network’s edges.
These functions are formulated as splines based on the Kolmogorov-Arnold represen-
tation theorem [3, 14, 15, 23]. This structural innovation eliminates the need for linear
weights and enhances interpretability, allowing scientists to directly identify critical
components within the input data. This feature makes KANs particularly valuable for
aiding new scientific discoveries. However, in the field of biology, the application of
KANs presents unique challenges due to the extremely high dimensionality of data, such
as gene sequences. The substantial length of these data imposes a significant parameter
burden on KANs. Although recent efforts have focused on improving the usability and
computational efficiency of KANs, significant challenges remain in their application
within biological domains. In this paper, we aim to improve the usability of KANs in
modeling gene sequences without compromising their interpretability and performance.

Gene Sequence-Expression Prediction Although deep learning models often yield
accurate results, they frequently lack interpretability, a critical shortcoming in many
scientific applications. For instance, in the task of gene sequence-expression prediction,
biologists require not only precise predictions but also an understanding of which
specific gene segments play key roles, providing insights that lead to new scientific
discoveries. In this paper, we specifically focus on the relationship between non-coding
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regulatory element sequences and gene expression, a fundamental task for understanding
gene regulation. Previous work [21] employed ConvNet-based approach to predict
gene expression in various plant species. Our approach seeks to enhance predictive
effectiveness with deeper biological insights.

3 KAN-Mixer

In this section, we detail our method, KAN-Mixer, to deal with the challenges posed by
KANs in processing long gene sequences. As shown in Figure 3, we introduce a token
embedding layer at the beginning of the model to extract features, with interpretability
ensured by the k-mers characteristics of gene sequences. Subsequently, we innovatively
incorporate KAN-Mixer to simultaneously focus on both channel and token information
within the tensor.

3.1 Premilinary

KAN is predicated on the Kolmogorov-Arnold Representation Theorem (Equation 1)
with learnable activation functions on edges and summation operations on nodes. This
theorem postulates that any multivariate continuous function on a bounded domain can
be expressed as a finite composition of continuous functions of a single variable and the
binary operation of addition.

f(x) =

2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p (xp)

)
(1)

for a smooth f : [0, 1]n → R, ϕq,p : [0, 1] → R and Φq : R → R.
KAN uses B-spline basis functions (Equation 2) to approximate ϕq,p and Φq. Al-

though KAN exhibits competitive accuracy and superior interpretability compared to
MLP, its computational speed is notably slower. To mitigate this deficiency, we replace
the B-spline basis functions (Equation 2) with Gaussian Radial Basis Functions (RBF)
(Equation 4) [2, 4, 10], following the same rationale as in [18]. These RBFs accurately
approximate the B-spline basis (in Figure 2) and are computationally efficient.

Bi,0(x) =

{
1 if xi ≤ x < xi+1,

0 otherwise
(2)

Bi,p(x) =
x− xi

xi+p − xi
Bi,p−1(x) +

xi+p+1 − x

xi+p+1 − xi+1
Bi+1,p−1(x) (3)

Ri(x) = exp

(
−
(
x− xi

h

)2
)

(4)

Except using RBF instead of B-spline basis function, LayerNorm (Equation 5) [1] is
also applied compared to the original KAN. LayerNorm is placed before RBF transform
after the input in order to scale inputs to the range of spline grids.
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Fig. 2: Gaussian Radial Basis Functions can well approximate 3-order B-Spline basis.

L(x) =
x− E(x)√
Var(x) + ϵ

∗ γ + β (5)

ϕl,i,j(·) = Rl,i,j(L(xl), g_min, g_max, num_g) (6)

where g_min, g_max, num_g determines the grid by changing the range and the
smoothness of the RBF basis.

A KAN with layers [n0, n1, · · · , nL] can be expressed as KAN(x) = (ΦL ◦ · · ·Φ2 ◦Φ1) (x)
with Φl shape [nl+1, nl]. The operation from layer nl to layer nl+1 can be represented as

xl+1 =


ϕl,1,1(·) ϕl,1,2(·) · · · ϕl,1,nl

(·)
ϕl,2,1(·) ϕl,2,2(·) · · · ϕl,2,nl

(·)
...

...
...

ϕl,nl+1,1(·) ϕl,nl+1,2(·) · · · ϕl,nl+1,nl
(·)


︸ ︷︷ ︸

Φl

xl, (7)

where Φl is the function matrix corresponding to the lth KAN layer, xl is the input from
the lth KAN layer with shape [nl, 1] and xl+1 is the output from the (l + 1)

th KAN layer
with shape [nl+1, 1]. The input layer data undergoes layer normalization to transform
it into the range of RBF spline grids. Subsequently, the RBF basis is computed based
on this normalized data, serving as an operator. These RBF basis-derived operators are
then learned through a MLP layer with solely trainable weight parameters. This process
constitutes the learning of the Φl component.

3.2 Token Embedding

The utilization of k-mers [13, 22] enables the extraction of fixed-length features from
gene sequences, analogous to employing fixed-size filters in image processing. This
method aligns with token-level analysis, reflecting the principles of k-mers in identifying
critical parts of gene sequences.



6 J. Gao et al.

Convolutional neural networks (ConvNets) [17] possess inherent inductive biases
that enhance learning efficiency [5, 8, 26], particularly through locality and translation
invariance. These biases allow ConvNets to exploit spatial hierarchies in data, making
them highly effective for image recognition tasks. The architecture of ConvNets enables
the learning of local features through convolutional layers, making them particularly
suitable for tasks involving spatial hierarchies, such as sequence analysis in genomics.
In this context, ConvNets can effectively capture local dependencies within nucleotide
sequences, identifying regulatory motifs that are crucial for gene expression regulation.
The weight-sharing mechanism in ConvNets reduces the number of parameters, enhanc-
ing both generalization and interpretability, as the learned filters often correspond to
biologically meaningful motifs.

Our model incorporates a Patch Embedding layer at the outset to ensure input
interpretability. This layer transforms one-hot encoded gene sequence data into a format
that enhances the model’s ability to extract and interpret meaningful features from
complex biological sequences. We employ a one-dimensional convolutional layer with
both the kernel size and stride set to 8. This configuration allows us to analyze the
importance of each input sequence segment in increments of 8 units. By balancing
granularity and comprehensibility, we can precisely identify segments that significantly
impact the model’s predictions. This choice maintains the clarity of the model’s decision-
making process and aligns with our goal of enhancing the interpretability of deep learning
models in genomic research.

3.3 Mixer Architecture

To extract richer features, our token embedding layer transforms the original 4-channel
one-hot representation of the gene sequence into 128 channels. This transformation
requires subsequent processing to calculate feature relationships not only between
different tokens but also across different channels. Inspired by the MLP-Mixer [24], we
leverage KANs to both token mixing and channel mixing processes, introducing our
method, KAN-Mixer. Each block in KAN-Mixer contains two distinct KANs, dedicated
to token mixing and channel mixing, respectively.

Token Mixing with KANs We replace the original fully connected layers with KANs
to leverage RBF approximation. This block initially expands the dimensionality of the
token representation to a higher-dimensional feature space, providing the necessary
operational space for KANs to learn and integrate features across a broader functional
landscape.

Channel Mixing with KANs Similarly, we utilize KANs to process the embedding dimen-
sions across different input channels. This block maintains the original dimensionality
but focuses on optimizing inter-channel feature integration directly within the embedding
space.

The input first undergoes processing through the Token Mixing block, where features
among different tokens (patches) are manipulated and integrated. The output from this
block is combined with the input via a residual connection, enhancing information
retention and gradient flow across the network. This combined output is then fed into
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Fig. 3: Structure of our Method. We introduce a token embedding layer at the beginning of our
model, setting the smallest modeling unit as a short genetic sequence. To enhance the learning of
relationships between adjacent tokens, we innovatively employ the KAN for both token mixing
and channel mixing, collectively forming the KAN Mixer.

the Channel Mixing block, where features are mixed at the channel level, enabling a
comprehensive amalgamation of learned representations across different feature channels.
In our experiments, for a vanilla KAN with layer dimensions [3020×4, 128, 2], KAN-
Mixer reduces the parameter count from 13.94 million to 1.44 million, demonstrating its
improved applicability and lighter parameter load.

3.4 Exploration on CIFAR

We first conducted a comparative study between KAN-Mixer and MLP-Mixer [24] on
tasks simpler than gene sequence-expression prediction. Specifically, we performed
image classification on the widely used CIFAR-10/100 datasets [16], which consist of
60,000 images divided into 10 and 100 classes, respectively. To ensure a fair comparison,
we configured KAN-Mixer with a similar number of parameters as the tiny-sized MLP-
Mixer. The experimental results are presented in Table 1.

In comparison to the state-of-the-art all-MLP architecture, MLP-Mixer, KAN-Mixer
demonstrates comparable accuracy in classifying small images. The CIFAR-10/100
experiments were crucial for fine-tuning KAN-Mixer ’s hyperparameters, e.g., learning
rate, normalization, weight decay, stride, layer number, and so on. As CIFAR-10/100 is a
standard dataset in deep learning with extensive research, it provides an ideal benchmark
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CIFAR-10 CIFAR-100

MLP-Mixer [24] 89.8 70.1
KAN-Mixer (Ours) 91.2 70.2

Table 1: Our method, KAN-Mixer, achieves performance comparable to the MLP-Mixer on
CIFAR-10/100 datasets. Accuracy, measured as a percentage, is used to evaluate performance,
with higher values indicating better outcomes.

for identifying issues in KAN-Mixer. We train our model on the training set and select
the suitable hyperparameters based on the test set. Moreover, since MLP-Mixer is a
vision model, performing CIFAR-10/100 classification tasks allows for straightforward
apples-to-apples comparisons.

During our experiments, we found that optimizing splines (using RBF) is a crucial
factor influencing both the performance and stability of KAN-Mixer. Additionally,
KAN exhibits a distinct advantage in interpretability, enabling the direct identification
of key regions in the input images. Consequently, we extended our study to address
the high-dimensional gene sequence expression challenge, thereby highlighting the
interpretability of KAN-Mixer.

4 Experiments

We first introduce the experimental setting concerning gene data, models, and metrics for
evaluation in Section 4.1. Besides, we report an overall comparison between KAN-Mixer
and baselines in Section 4.2. Finally, we provide the visualization of KAN-Mixer and
provide some interpretations in Section 4.3.

4.1 Settings

Dataset Following the same dataset setting3 of the [21], we utilize the genome assem-
blies and annotations from the Ensembl Plants database (v52) [9]. These sequences span
500−3000 nucleotides upstream and 100−700 nucleotides downstream of the transcrip-
tion start site (TSS), and 100−700 nucleotides upstream and 500−3000 nucleotides
downstream of the transcription termination site (TTS). We encoded the gene flanking
sequences using one-hot encoding, resulting in data shaped (3020, 4).

Labels are derived by estimating the log-transformed transcript per million values
(logMaxTPM) and categorizing them as low, medium, or high, based on the lower and
upper quartiles of the logMaxTPM distribution. We specifically target genes that fall
below the lower quartile or above the upper quartile of this distribution. Consequently,
the task is framed as a binary classification problem, aiming to predict genes as either
low (below the lower quartile) or high (above the upper quartile).

3 https://github.com/NAMlab/DeepCRE

https://github.com/NAMlab/DeepCRE
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Model The model is structured into four key components: a patch embedding layer, a
KAN-Mixer layer, an average pooling layer, and a linear head for binary classification.
For a fair comparison with the baseline [21], the patch embedding layer extracts an
“8-mer” feature by employing a 1D convolution with both a patch size and a stride
of 8. This results in 378−dimensional tokens that are subsequently processed by the
KAN-Mixer layer, which has a feature dimension of 128, matching that of the final linear
head. Notably, the configuration of the KAN-Mixer layer here differs from that used
in our CIFAR experiments. Detailed code will be released soon. For optimization, we
employ an Adam optimizer with a learning rate of 5e-4 and a weight decay rate of 0.1
for the spline linear layer. Additional details are available in the appendix.

The baseline model, as detailed in the original paper by Peleke et al. [21], comprises
three blocks and an MLP. Each block contains two convolutional layers, a max pooling
layer, and a dropout layer. Further specifications are provided in the appendix. Notably,
the original study used the test set to adjust the learning rate and implement early
stopping, and considered the best training accuracy as the final result 4. We address
these methodological flaws by eliminating any test set exposure during training and
limiting the training duration to 5 epochs, as both models demonstrate rapid convergence.
Additionally, for comparison with KAN-Mixer, our baselines include both traditional
KANs and MLPs with layer dimensions of [3020× 4, 128, 2].

Metrics There are two settings in our experiment, single species (in-domain), and cross
species (out-of-domain). We conduct experiments on four plant species, Arabidopsis
thaliana, Solanum lycopersicum, Sorghum bicolor, and Zea mays.

In the single species (in-domain) task, each species had two tissue types exam-
ined, root and leaf. To testify to the validity of our models and baselines, we take
chromosomal-level cross-validation, in which for each iteration, genes located on one of
the chromosomes were used as a validation set and the rest for training. In other words,
for a given chromosome within a specific tissue and species, all other chromosomes
from that tissue and species constituted the training set, while that chromosome served
as the validation set.

In the cross species (out-of-domain) task, for a particular chromosome within a
specific tissue and species, all other species with the same tissue type formed the training
set, and that chromosome functioned as the validation set.

The metrics evaluated are validation accuracy and the area under the receiver operat-
ing characteristic curve (AUC-ROC), which is a performance metric used to evaluate the
ability of a binary classification model to distinguish between classes, representing the
likelihood that a randomly chosen positive instance is ranked higher than a randomly
chosen negative one.

4.2 Results

In-domain Experiments As evidenced by the results presented in Table 2, KAN-Mixer
achieves highly competitive performance compared to the baseline method across various

4 Details can be found in the official codebase.

https://github.com/NAMlab/DeepCRE/blob/main/model/utils.py#L172
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Method Zea Sor Ara Sol Average

Acc↑ AUC-ROC↑ Acc↑ AUC-ROC↑ Acc ↑ AUC-ROC ↑ Acc↑ AUC-ROC ↑ Acc ↑ AUC-ROC ↑
Vanilla-MLP 75.1 79.3 73.0 75.5 76.8 83.0 78.0 81.6 75.7 79.5
Vanilla-KAN 67.5 66.9 61.9 66.1 67.9 73.0 69.4 71.1 66.7 68.8
KAN-Mixer 76.4 82.5 75.5 81.5 78.9 87.2 79.5 85.5 77.5 83.8
ConvNet [21] 77.7 83.8 76.6 81.9 73.2 80.1 80.2 86.2 77.6 83.6

Table 2: Performance comparison on in-domain plant datasets. Our method KAN-Mixer achieves
comparable accuracy (Acc) and AUC-ROC scores to the baseline across different plant datasets,
with a significant improvement on the Arabidopsis thaliana dataset.

plant species. Notably, for the Zea mays dataset, KAN-Mixer attains superior accuracy
and AUC-ROC score of 78.9% and 87.2%, respectively, outperforming the ConvNet’s
[21] 73.2% and 80.1%. This remarkable improvement highlights KAN-Mixer’s capability
to handle complex biological tasks in an internal environment. Moreover, the results
demonstrate that KAN-Mixer’s performance is on par with the baseline across the
remaining plant species, with comparable or marginally lower scores, demonstrating the
effectiveness and applicability of KAN-Mixer. A detailed experiment can be found in
Figure 4. More results are shown in the Appendix.

Method Zea Sor Ara Sol Average

Acc ↑ AUC-ROC ↑ Acc ↑ AUC-ROC ↑ Acc ↑ AUC-ROC ↑ Acc ↑ AUC-ROC ↑ Acc ↑ AUC-ROC ↑
KAN-Mixer 78.2 86.7 75.4 83.3 71.0 80.3 70.7 83.9 74.1 84.0
ConvNet [21] 76.8 83.4 74.0 81.9 75.0 83.2 74.0 81.9 75.8 83.4

Table 3: Out-domain performance comparison across plant datasets. While our method KAN-
Mixer exhibits slightly lower accuracy and Auc-roc scores compared to the baseline for certain
plant species like Arabidopsis thaliana, its overall performance remains highly competitive. No-
tably, KAN-Mixer outperforms the baseline in predicting traits for Zea mays, achieving higher
accuracy of 0.782 and Auc-ROC of 0.867. This showcases KAN-Mixer’s ability to effectively
transfer knowledge from in-domain tasks to related out-domain contexts, demonstrating its strong
generalization capabilities.

Out-domain Experiments Extending our evaluation to out-domain scenarios, the findings
presented in Table 3 underscore KAN-Mixer’s remarkable generalization capabilities.
While KAN-Mixer’s accuracy and AUC-ROC scores exhibit a slight decrease compared
to the baseline for certain plant species, such as Arabidopsis thaliana and Solanum
lycopersicum, its overall performance remains highly competitive and on par with the
baseline method’s average scores. Remarkably, KAN-Mixer outperforms the baseline
in predicting traits for Zea mays, achieving superior accuracy and AUC-ROC scores
of 78.2% and 86.7%, respectively. This outcome highlights KAN-Mixer’s adeptness at
transferring knowledge acquired from in-domain tasks to related yet distinct out-domain
contexts, thereby enhancing its predictive prowess and generalization capabilities. The
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Species Tissue Chromosome
Baseline KAN-Mixer

acc ↑ aucroc↑ acc↑ aucroc↑

Arabidopsis thaliana leaf 1 0.677 0.748 0.757 0.850
Arabidopsis thaliana leaf 2 0.682 0.753 0.779 0.856
Arabidopsis thaliana leaf 3 0.799 0.870 0.797 0.890
Arabidopsis thaliana leaf 4 0.799 0.851 0.776 0.863
Arabidopsis thaliana leaf 5 0.746 0.803 0.753 0.847
Arabidopsis thaliana root 1 0.693 0.763 0.768 0.834
Arabidopsis thaliana root 2 0.741 0.819 0.797 0.893
Arabidopsis thaliana root 3 0.756 0.839 0.826 0.910
Arabidopsis thaliana root 4 0.723 0.804 0.824 0.887
Arabidopsis thaliana root 5 0.702 0.762 0.811 0.887
Solanum lycopersicum leaf 1 0.748 0.843 0.755 0.845
Solanum lycopersicum leaf 2 0.749 0.826 0.806 0.843
Solanum lycopersicum leaf 3 0.754 0.820 0.757 0.796
Solanum lycopersicum leaf 5 0.853 0.870 0.855 0.884
Solanum lycopersicum leaf 6 0.790 0.867 0.788 0.860
Solanum lycopersicum leaf 7 0.807 0.859 0.799 0.851
Solanum lycopersicum leaf 8 0.800 0.872 0.815 0.863
Solanum lycopersicum leaf 9 0.801 0.850 0.795 0.848
Solanum lycopersicum leaf 10 0.828 0.864 0.772 0.852
Solanum lycopersicum leaf 11 0.856 0.905 0.847 0.900
Solanum lycopersicum leaf 12 0.793 0.811 0.793 0.823
Solanum lycopersicum root 1 0.779 0.876 0.771 0.854
Solanum lycopersicum root 2 0.802 0.854 0.792 0.851
Solanum lycopersicum root 3 0.784 0.826 0.741 0.812
Solanum lycopersicum root 4 0.820 0.872 0.811 0.879
Solanum lycopersicum root 5 0.809 0.854 0.786 0.849
Solanum lycopersicum root 6 0.849 0.906 0.842 0.897
Solanum lycopersicum root 7 0.814 0.885 0.791 0.863
Solanum lycopersicum root 8 0.823 0.896 0.755 0.841
Solanum lycopersicum root 9 0.788 0.830 0.799 0.864
Solanum lycopersicum root 10 0.836 0.878 0.788 0.861
Solanum lycopersicum root 11 0.857 0.906 0.829 0.897
Solanum lycopersicum root 12 0.759 0.823 0.781 0.799

Table 4: In-domain performance comparison across plant datasets.
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consistent and robust performance of KAN-Mixer across both in-domain and out-domain
experiments substantiates its efficacy and potential for widespread adoption in diverse
biological applications.

Fig. 4: KAN-Mixer efficiently exchanges input information across both token and feature dimen-
sions. We visually represent the input (a) and output (b) values of a single layer of KAN-Mixer.
The x-axis corresponds to the token dimensions derived from 8-mer gene sequences, ranging from
1 to 378 dimensions, while the y-axis represents the data dimensions. This visualization is based
on 200 test samples post-training. Each plotted point (x, y) is color-coded based on the numerical
value of the x-th dimension of the token for the y-th sample, where higher numerical values are
depicted in shades of blue and lower ones in shades of yellow.

4.3 Interpretability and Visualization

KAN-Mixer effectively exchanges the input information in both token and feature
dimensions. We plot the different values of the inputs and outputs (left and right) of
one KAN-Mixer layer in Figure 4. The figure is drawn from the root of the Solanum
lycopersicum, on the 6th chromosome. The x-axis delineates the token dimensions
extracted from 8-mer gene sequences, ranging from 1 to 378 dimensions. The y-axis
represents the data dimensions. After training, a total of two hundred test samples
contributed to the generation of this graph. Each point (x, y) is colored according to
the numerical value of the x-th dimension of the token for the y-th sample, where a
greater numerical value corresponds to a bluer color, while a smaller one corresponds
to a more yellow hue. Before our KAN-Mixer layer, the data feature has almost no
distribution among the token dimensions. However, the distribution among the token
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dimensions becomes vivid after KAN-Mixer layer, since there is a significant increase
in the number of vertical lines in the output graph. Compared to the input, the output
distribution exhibits a pattern of interweaving both horizontally and vertically.

(a) Input values of layer 1

O
ut
pu
tV
al
ue
s

(b) Input values of layer 2

Fig. 5: KAN-Mixer reveals an emergent intra-layer pattern in untranslated gene regions and gene
expression. We employ the same pruning and visualization techniques as KAN [19]. Due to the
high token dimension of 128, we rank and select the top dimension based on importance scores
for visualization. Red points represent different data samples. The x-axis shows the input values
of each sample at the top input dimension, while the y-axis shows the output values at the top
output dimension. Layer 1 exhibits an approximate Gaussian distribution, whereas layer 2 shows a
distinct Sigmoid distribution.

KAN-Mixer demonstrates a spontaneous intra-layer pattern in untranslated gene
regions and gene expression. Figure 5 adopts the same pruning and visualization of
KANs [19], where a scatter figure is plotted to record the pre-layer input and the post-
layer output in diverse dimensions. As the token dimension of 128 is too high for
visualization, we rank the same importance score and select the top dimension. The
red points in the figure represent different data samples. The x-axis plots the value of
input value of each sample at the top input dimension. The y-axis plots the value of
output value of each sample at the top output dimension. Layer 1 has a rough Gaussian
distribution while layer 2 represents a different Sigmoid distribution. Note that we never
take both Gaussian and Sigmoid-like functions in our training losses. This spontaneous
nature demonstrates the interpretability within different KAN-Mixer layers, which was
neither feasible nor practical in previous deep learning models.

5 Discussion

KANs have recently demonstrated their potential in aiding scientists to identify crucial
relationships within input dimensions, thereby facilitating new scientific discoveries due
to their superior interpretability. In this paper, we explore the applicability of KANs in
predicting biological gene sequence expression, specifically within an ecological context.
To ensure interpretability, we encountered the challenge of inputting extremely long gene
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sequences into KAN, resulting in a substantial parameter burden. Drawing inspiration
from the concept of k-mer in bioinformatics, we propose introducing a locality-focused
weight-sharing inductive bias to KAN, significantly reducing computational costs. Specif-
ically, we employ convolution operators for token embedding to transform one-hot gene
features into k-mer tokens. These tokens are then processed by KAN-augmented token
mixing and channel mixing blocks, which efficiently exchange information across both
token and feature dimensions. Our experiments on gene sequence expression prediction
for non-coding regulatory elements indicate that our method, KAN-Mixer, achieves
performance comparable to a state-of-the-art ConvNet-based approach. More impor-
tantly, this new approach retains KANs’ excellent interpretability, accurately identifying
key segments within input gene sequences without the need for additional tools. This
novel modeling paradigm is poised to advance KANs’ role in promoting ecological and
biological scientific discoveries in the future. By providing a robust and interpretable
framework for gene expression analysis, KAN-Mixer can significantly enhance our
understanding of ecological dynamics and biodiversity. This approach has the poten-
tial to inform conservation strategies, improve agricultural practices, and contribute to
ecological management across various environmental contexts.

Ethics Considerations In the application of KANs for gene expression prediction, it is
essential to consider the ethical implications, particularly in the context of ecological
research. Our work emphasizes the importance of transparency and interpretability in
AI models, ensuring that the insights derived from these models can be understood and
trusted by the broader scientific community. This transparency is crucial for the respon-
sible application of AI in sensitive areas such as conservation and biodiversity, where
decisions can have significant environmental impacts. Furthermore, the deployment of
such models must respect the ethical guidelines surrounding genetic data usage, includ-
ing privacy and consent, especially when dealing with indigenous and local communities’
genetic resources. Adhering to ethical standards helps in maintaining public trust and
fostering collaborations across different sectors. By integrating ethical considerations
into our research, we aim to set a precedent for the responsible use of advanced compu-
tational techniques in ecological and biological studies, ensuring that scientific progress
goes hand in hand with ethical responsibility.

Limitations & Future Work Our research targets the prediction of gene sequence ex-
pression in the biological domain, focusing on identifying crucial segments within
well-expressed gene sequences. Despite the promising results, several critical questions
remain unanswered, indicating directions for future research. Primarily, KAN-Mixer has
concentrated on classifying gene sequence expression in various plant non-coding regu-
latory elements, offering a more intuitive and interactive framework. Leveraging KANs’
interpretability, we aim to deepen our understanding of the underlying mechanisms
of gene expression, thereby accelerating scientific discovery. Future research should
explore whether a clearer link between input features and outputs can improve our com-
prehension of gene-phenotype relationships. Moreover, future work should investigate
the integration of large-scale pre-trained features from DNA foundation models, such as
Evo [20]. Utilizing these pre-trained features could significantly improve the efficiency
and effectiveness of our models, leading to more accurate and insightful predictions.
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