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Abstract. The escalating complexity of image classification tasks in
ecological monitoring has highlighted the limitations of conventional ma-
chine learning models, particularly when faced with long-tailed data
distributions typical of natural environments. This paper introduces a
comprehensive framework that leverages a novel dataset obtained from
the Plankton Imaging (Pi-10) instrument designed to enhance plank-
ton image classification accuracy in a real-time application. We em-
ploy cutting-edge image classification architectures, including pre-trained
Vision Transformers (ViT) and BEiT. We integrate the Label-Aware
Smoothing Model into our training process to address the challenges of
long-tailed data distributions often encountered in ecological datasets.
Further, we innovate with dynamic label-aware smoothing, which ad-
justs smoothing factors based on attention scores from ViTs to tailor
model confidence to the significance of different image regions. The re-
sults demonstrate marked improvements in classification performance on
the Pi-10 dataset, effectively handling long-tail distribution challenges
and setting new benchmarks for real-time image classification in ecologi-
cal research. This approach advances the state of ecological imaging and
provides a scalable solution adaptable to other domains encountering
similar distributional challenges.

Keywords: Transformer· Long-Tail Recognition · Plankton Image Anal-
ysis

1 Introduction

Plankton, microscopic organisms in marine and freshwater environments, are
key indicators of aquatic ecosystem health. Their sensitivity to environmental
changes and short life cycles make them crucial for monitoring. By observing
plankton, we gain insights into the biogeochemistry and productivity of the
oceans, as their presence and behavior reflect the impacts of changing conditions
[33, 38]. Image processing technologies offer a promising approach to enhancing
the accuracy and efficiency of plankton monitoring. These technologies allow for
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detailed insights into plankton distribution across various scales, reducing the
reliance on traditional, labour-intensive methods that involve manual sampling
and identification [2, 11,18,27].

However, applying machine learning and image processing techniques to
plankton data introduces significant challenges, such as data set shifts (DSS),
when the characteristics of the plankton images in the training set may not fully
represent the diversity and variability present in the open ocean particles that
the real-time classifier will encounter during deployment [31]. The DSS compli-
cates the application of conventional machine learning models, as the feature
distribution in training sets often fails to mirror real-world conditions [35].

Traditional deep-learning approaches to plankton image classification are
particularly challenging due to the high variability of features within classes and
the similarity between different classes. These factors complicate practical model
training and accurate classification. However, given their significant success in
computer vision, Vision Transformers (ViTs) are becoming increasingly popular
and widely utilised in visual recognition tasks [14]. In response, a comprehensive
study shows that ViTs outperform convolutional neural networks (CNN)-based
methods [26]. However, real-world data often exhibits significant class imbalance
that can severely skew outcomes in data-driven deep neural networks, making the
task of Long-Tailed Recognition (LTR) particularly challenging, where common
species (head) are over-represented relative to rarer species (tail). Traditional
techniques - such as random downsampling of majority classes or oversampling
of minority classes - can be used to address class imbalance, though may lead to
the loss of important information or overfitting [3,46]. To overcome these issues,
LTR and transfer learning are increasingly utilised to enhance model adaptabil-
ity and accuracy [15,19,26,37].

This paper introduces a new dataset from the Plankton Imaging (Pi-10)
instrument, a state-of-the-art high-speed colour line scan imaging device, along-
side a real-time framework designed to elevate image classification efficacy, par-
ticularly addressing the complexities introduced by long-tailed data distribu-
tions. We have adapted leading-edge, pre-trained image classification architec-
tures, notably the ViT [14] and BEiT [1], which are renowned for their excep-
tional performance across various tasks. Additionally, We have integrated the
advanced Label-Aware Smoothing model (LAS) [51] into our training process
to enhance efficacy, boost real-time classification capabilities, and effectively ad-
dress LTR challenges [20, 40]. To further improve classification on highly im-
balanced datasets, we propose a novel dynamic label-aware smoothing method
that adjusts smoothing factors based on the attention scores computed for each
patch by ViTs. This innovation ensures that the label smoothing factors are dy-
namically tuned, reflecting the varying significance of different image parts as
perceived by the transformer architecture. In summary, our contributions are (i)
the adoption of ViT and BEiT models to achieve superior image classification
performance, (ii) the integration of dynamic label-aware smoothing to address
long-tail data challenges effectively, and (iii) the effective use of transfer learning
to enhance model performance on the newly introduced Pi-10 dataset.
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2 Related work

Transformers The Vision Transformer (ViT) model represents a significant
departure from traditional image classification methods, which predominantly
utilised Convolutional Neural Networks (CNNs). The ViT model adopts the
Transformer architecture, originally designed for natural language processing
tasks [45], and adapts it for visual data. This approach allows the model to effec-
tively handle long-range dependencies between image patches [14], introducing
a novel methodology for image analysis. Complementing the ViT, the Bidirec-
tional Encoder Representation from Image Transformers (BEiT) [1] employs a
self-supervised learning approach, inspired by BERT [13], for pre-training vision
transformers. This is achieved through a masked image modeling task, enabling
the model to learn valuable visual representations without the need for labeled
data, thus significantly improving its efficacy in downstream tasks.

The BEiT model was pre-trained on extensive datasets [42], and subsequently
fine-tuned in a supervised fashion on ImageNet [12]. BEiT demonstrates supe-
rior capabilities in downstream image classification tasks, potentially surpassing
traditional CNNs [5, 47]. ViT and BEiT have been used for plankton image
analysis and showed promising results in enhancing ecology studies [8,26]. Here,
we incorporate ViT and BEiT with LTR strategies, representing significant ad-
vancements over traditional CNNs. Our results demonstrate that the ViT model
is competitive with the BEiT model when applied to long-tail data, particularly
after incorporating dynamic label-aware smoothing.

Transfer learning in plankton image classification Previous work on
plankton image classification has demonstrated that out-of-domain transfer learn-
ing, using models pre-trained on large-scale natural image datasets such as Ima-
geNet1K or ImageNet22K, yields good results [26]. Hence, we use a pre-trained
ResNet-18 model with ImageNet as a baseline model. We then employ the ViT
model, which uses the Transformer architecture (see 4.2 for more details), which
was initially trained on ImageNet-21k and subsequently fine-tuned on ImageNet
2012. Furthermore, we use the BEiT model, pre-trained in a self-supervised man-
ner on the same dataset as ViT (also known as ImageNet-21k [12]). This dataset
consists of 14 million images and 21,841 classes, at a resolution of 224x224, and
the model is subsequently fine-tuned on the same dataset at the same resolution.

Long-tail learning The challenges posed by imbalanced datasets in ma-
chine learning are critical, especially for tasks that rely on accurate represen-
tation of minority classes [20, 28, 40]. Various strategies have been developed to
tackle this issue, including Post-hoc correction methods, which adjust a model’s
outputs after training to better represent minority classes [3, 9, 17, 23, 36]. Data
modification strategies alter the training dataset by methods like oversampling
the less represented classes or undersampling the overrepresented ones, thereby
aiming to balance the training environment [6, 7, 48]. Additionally, Loss weight-
ing involves adjusting the loss function to impose heavier penalties for misclas-
sifications of minority classes, thus directing the model’s focus towards these
classes [10,10,16,22,29]. Lastly, Margin modification techniques, including logit
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adjustment, tailor the decision boundary by modifying class logits to enhance
the classifier’s fairness towards minority classes [21,24,30,43,49,50].

The challenge posed by the skewed distribution of class frequencies in our
plankton dataset was met with a novel integration of LTR strategies during
the training phase. We implemented a Label-Aware Smoothing model (LAS) for
ViT and compared it with a range of approaches including Class-Balanced (CB),
Label-Distribution-Aware Margin (LDAM), Balanced Cross-Entropy (Bal_CE),
and an adjusted form of Binary Cross-Entropy (BCE) loss [4, 10, 30]. The LAS
loss was the most accurate, significantly enhancing model performance across
minority classes. Additionally, transfer learning played a pivotal role in refining
model accuracy and training efficiency. By incorporating the newly introduced
Pi-10 dataset and fine-tuning pre-existing models over a concise series of train-
ing epochs, we achieved rapid model convergence and marked improvement in
accuracy.

3 Plankton imager system

The Plankton Imager Pi-104 is a high-speed color line scan imaging instru-
ment [11, 34, 39]. The instrument is connected to the clean sea water underway
system (inlet at 4 m depth), which supplies water continuously (flow rate of 34
L min-1). It captures images of passing particles within a size range of 180 µm
to 3.5 cm at a resolution of 10 um. Images are taken in RGB color using an
EPIX E8 frame store, and processed to extract a region of interest, saved in
TIFF format with a timestamp and unique identifier. Raw images are stored in
12-bit resolution and then converted to 8-bit for viewing and analysis. The Pi-10
operates continuously during surveys, capturing images of all particles passing
through the flow cell, with only mesozooplankton (200 µm – 2 cm) processed
and saved due to file-size constraints and operational needs. Owing to plank-
ton’s skewed distributions towards smaller species, most of the captured images
show small plankton and particles [44]. The annotation process involves a trained
taxonomist sorting through the collection of images, categorizing them into eco-
logically relevant groups (supplementary materials). The plankton dataset was
gathered during a research cruise on the Research Vessel Cefas Endeavour at
a specific site (Fig.1) in the North Sea, utilising the Plankton Imager (Pi-10
version).

Realtime access to plankton imager data We developed a real-time
classification pipeline where images are taken and immediately classified. This
pipeline bypasses the often long periods between image collection, big data trans-
ferring, and image analysis. The real-time data collection pipeline is equipped
with a Pi-10 instrument. For in-situ image processing and classification tasks, we
utilise the "Edge-AI" The NVIDIA Jetson AGX Orin5 is a compact and pow-
erful edge device equipped with a GPU explicitly designed for AI and machine
learning applications in resource-constrained environments. We chose this device
4 More details can be found at www.planktonanalytics.com
5 www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-orin/

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-orin/
https://www.planktonanalytics.com
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-agx-orin/
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Fig. 1: Sample diversity captured by the Plankton Imager (Location of the Research
Vesse): a comparative display of copepods, non-copepods, and detritus

because of its optimal balance of performance and size, which makes it ideal for
deploying advanced AI workloads directly at the edge without relying on cloud
infrastructure. This system processes the images to categorise them into counts
of copepods, non-copepods, and detritus via real-time classification using a trans-
former model. Summarized data are then transmitted via the ship’s broadband
satellite communication systems to a cloud-hosted digital dashboard6, enabling
remote access and analysis. The Pi-10 imaging system captures images that are
processed in real-time and simultaneously stored on a hard drive for further
analysis. In this study, we utilised a comprehensive dataset of 55,570 samples
from the Pi-10 dataset gathered during a fisheries survey conducted in the North
Sea in August 2023. The data, meticulously labeled by taxonomists, was used
to train our proposed model, ensuring accuracy and relevance in the classifica-
tion process. The evaluation of the final model occurs in two stages: initially, it
was assessed using a designated test set; subsequently, it will be integrated into
the real-time pipeline for monitoring marine plankton. This dual-phase testing
ensures both the efficacy and practical applicability of the model, culminating
in its deployment to monitor plankton via a live dashboard actively.

Train/validation/test split To ensure robust model performance assess-
ment, we employed a data splitting strategy: 70% of the dataset was allocated for
training and 10% for validation purposes, while the remaining 20% was reserved
for testing. The total number of tests is 11,114, comprising 2,451 for copepod,
8,203 for detritus, and 460 for non-copepod.

4 Methodology

4.1 Task definition

In studying visual recognition with skewed class distributions, we analyse a
dataset D = {X,Y } consisting of N entries divided among K different classes.
6 More details can be found at https://planktonapi-dev.cefastest.co.uk.

https://planktonapi-dev.cefastest.co.uk
https://planktonapi-dev.cefastest.co.uk
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Each data point xi in X corresponds to a label yi from Y , with yi ranging from 1
to K. The representation of each class Ki differs markedly, with ni instances per
class, characterizing the dataset’s long-tail distribution. We denote the disparity
in class representation by the imbalance ratio γ = nmax

nmin
. To address this imbal-

ance, we propose to develop a model M = {Fθf ,Wθw}, incorporating a feature
encoder Fθf and a classifier Wθw , tailored to effectively handle these disparities.

4.2 Classification model

The classification process begins by segmenting each input image into smaller
patches. Each patch is linearly transformed and embedded with positional encod-
ings to preserve spatial relationships within the image. These encoded patches
are then passed through multiple layers of the Vision Transformer (ViT) encoder,
where they undergo multi-headed self-attention and feed-forward processing. The
output from the final encoder layer is fed into a classification head that predicts
the image class. The operations within the transformer utilised by the ViT are
mathematically described by:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (1)

where Q, K, and V represent the query, key, and value matrices derived from
the input embeddings, and dk is the dimensionality of the keys.

4.3 Label-aware smoothing

The label-aware smoothing (LAS) [51] model is crucial for addressing issues
related to the over-confidence of predictions typically seen with cross-entropy
loss and the varying distributions of predicted probabilities across classes.

The LAS loss function is defined as:

l(q, p) = −
K∑
i=1

qi log pi, (2)

where qi is the target distribution after label-aware smoothing:

qi =

{
1− ϵy =

ϵy
K−1f(Nj), if i = y,

ϵy
K−1 , otherwise.

(3)

Here, ϵ is the base smoothing parameter, y is the true class, and Ny repre-
sents the number of instances for class y, influencing the function f(Ny). The
label-aware smoothing function f(Ny) is designed to vary the smoothing effect
dynamically according to class frequency, making the model more sensitive to
less frequent classes. This function is defined in several forms, such as linear,
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concave, and convex. In this study, we employ the concave form, which has
demonstrated promising outcomes in initial experiments:

f(Ny) = ϵK + (ϵ1 − ϵK) sin

(
π(Ny −NK)

2(N1 −NK)

)
(4)

where:

– ϵ1 and ϵK are the maximum and minimum smoothing parameters, respec-
tively.

– N1 and NK are the maximum and minimum class frequencies in the dataset,
respectively.

The concave form of label smoothing increases regularisation more substan-
tially for classes with fewer instances, effectively strengthening regularisation
where it is most needed. This method aims to mitigate bias toward frequently
occurring classes by moderating the confidence levels of the predictions, thereby
enhancing performance in less common classes. The formula for cross-entropy
loss after applying the softmax function is defined as

l(y; p) = − log(py) = −wT
y x+ log

(∑
i

exp(wT
i x)

)
, (5)

where y ∈ {1, 2, . . . ,K} denotes the label. Here, the feature vector x resides
in RM and is input into the classifier, and wi represents the i-th column vector
of the weight matrix W . The ideal scenario occurs when w∗T

y x → ∞ and wT
i x for

i ̸= y remains comparatively low. This optimization is supported by the adjusted
softmax weights:

w∗T
i x =

{
log
(

(K−1)(1−ϵy)
ϵy

)
+ c, if i = y,

c, otherwise,
(6)

where c is a calibration constant.

4.4 Dynamic label-aware smoothing for ViTs

Label-aware smoothing in traditional CNNs adjusts the confidence levels as-
signed to class labels to mitigate the model’s overconfidence. For ViTs, which
interpret the global context of an image differently through a self-attention
mechanism, we propose a dynamic label-aware smoothing method that adjusts
smoothing factors based on the attention scores computed for each patch. The
modified label smoothing formula is given by:

qi =

{
1− ϵy · αi if i = true class,
ϵy·αi

K−1 otherwise,
(7)

where αi represents the normalised attention weight assigned to the patch
corresponding to the true class, and ϵy is the base smoothing factor, chosen based
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on preliminary experiments to optimise model performance. This adjustment
ensures that the smoothing factor is contextually relevant, reflecting the varying
significance of different image parts as perceived by the transformer.

4.5 Attention-weighted smoothing factor

In ViTs, the self-attention mechanism assigns different weights to input image
patches, reflecting their importance. These weights, α = {α1, α2, ..., αN} for N
patches, are derived using the softmax function to ensure they are normalised
and sum to one, essential for their subsequent use as dynamic factors in label
smoothing. The normalised attention weight for each patch i is calculated as:

αi =
exp(ai)∑N
j=1 exp(aj)

(8)

where ai is the raw attention score for patch i. These weights are then used to
scale the label smoothing factors dynamically. This dynamic adjustment ensures
that patches deemed more significant by the attention mechanism have a greater
influence on the smoothed labels, thus aligning the model’s learning process more
closely with the intrinsic data distribution and enhancing its performance on
imbalanced datasets.

5 Experiment details

5.1 Model training

For our experiments, we utilised two pre-trained models: Google’s ViT [47] and
Microsoft’s BEiT [12], both adapted to classify the three distinct categories
depicted in Fig. 1. The input images underwent preprocessing with transfor-
mations, including random resized cropping to (224×224), random horizontal
flipping, and rotations of up to 10 degrees. Additionally, brightness, contrast, sat-
uration, and hue were moderately adjusted to augment the dataset. We applied
normalisation using the default ImageNet means and standard deviations. The
dataset was split into training (70%) and validation (10%) sets. Class weights
were computed and normalised to ensure balanced learning across the categories.

To handle the long-tail distribution, we evaluated several techniques, includ-
ing LAS loss and Bal_CE loss, with parameters fine-tuned according to the class
weights and specific model requirements. Optimisation was conducted using the
Adam optimiser with an initial learning rate of 0.00005, with training extending
up to 30 epochs or until convergence was observed on the validation set.

The optimal model configurations were determined by achieving the high-
est validation accuracy. We fine-tuned hyperparameters such as learning rate
and batch size in subsequent training runs, with detailed configuration track-
ing using Weights & Biases. To ensure reproducibility, three random seeds were
used across multiple runs. The results are reported as the best validation ac-
curacy obtained during training, demonstrating that the models—especially
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ViT—performed well, outperforming traditional CNN-based models and offering
competitive results compared to BEiT.

5.2 Hyperparameter grid search

To optimise the performance of our models, we conducted a hyperparameter
grid search, systematically exploring multiple combinations to identify the best
configuration. For the ResNet model, the grid included the number of epochs
{20, 30, 100} and learning rates {0.01, 0.001, 0.0001}. The optimal configuration,
determined based on validation accuracy, was a learning rate of 0.0001 and 30
epochs. For the fine-tuned ViT and BEiT models, we explored learning rates
{1× 10−4, 5× 10−5, 1× 10−5}, epochs {10, 20, 30}, a training batch size of 32,
an evaluation batch size of 32, and gradient accumulation steps set to 4. The
optimiser used was Adam with β values {0.9, 0.999} and an epsilon of 1× 10−8.
We employed a linear learning rate scheduler with a warmup ratio of 0.1 to
improve training stability. These hyperparameters were meticulously selected to
ensure robust training and high accuracy.

5.3 Metrics

We evaluated each model by calculating the macro-averaged F1-score, which as-
signs equal importance to all classes, regardless of their frequency. This approach
ensures that the F1-score, recall, and precision metrics are calculated in a way
that considers each class equally. By using macro-averaging, the method is sen-
sitive to underperformance in less frequent classes, highlighting areas where the
model may struggle. Additionally, we normalised the confusion matrix to show
percentages, offering a clear visual representation of the model’s strengths and
weaknesses across different categories (supplementary materials).

6 Results

6.1 Classifier

Table 1 compares the different models and loss functions based on their macro-
averaged and non-copepod-specific F1-scores. Our proposed LAS loss function
consistently outperforms alternatives, particularly when integrated with the ViT
architecture. The ViT-LAS model achieves the highest macro-average F1-score
(0.98 ± 0.2) and non-copepod F1-score (0.95 ± 0.5), setting a new benchmark for
balanced multi-class classification in this domain. While models utilising ST_CE
and Bal_CE demonstrate competitive performance, they encounter challenges
with the non-copepod class, where class imbalance is more severe. BEiT and
ViT models trained with BCE and LDAM losses also achieve strong results
but exhibit greater variability across multiple runs. In summary, our findings
highlight the LAS loss function’s robustness in addressing class imbalance and
improving classification performance, particularly for the underrepresented non-
copepod class. The ViT-LAS model stands out as the top performer, making it
the most dependable choice for this classification task.
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Table 1: Comparative Performance Metrics of Deep Learning Models: This Table
Displays F1-Scores and Standard Deviations for Various Models Under Different Loss
Functions and Training Epochs, Covering Both Overall Macro Averages and Minority
Class-Specific Scores for Non-Copepods.

Model
Name

Loss
Function

Number of
Epochs

F1-Score
(macro avg)

F1-Score
(non-copepod)

ResNet ST_CE 30 0.93± 0.07 0.83± 0.2
Beit Bal_CE 20 0.95± 0.05 0.88± 0.5
Beit LDAM 20 0.96± 0.2 0.90± 0.4
Beit LAS (ours) 20 0.97± 0.3 0.93± 0.7
Beit BCE 10 0.96± 0.1 0.91± 0.8
Beit ST_CE 20 0.94± 0.5 0.90± 0.3
Beit CB_CE 20 0.94± 0.7 0.86± 0.2
ViT ST_CE 30 0.93± 0.4 0.90± 0.1
ViT BCE 20 0.97± 0.5 0.93± 0.6
ViT Bal_CE 20 0.97± 0.2 0.92± 0.6
ViT CB_CE 10 0.97± 0.7 0.92± 0.5
ViT LDAM 10 0.97± 0.4 0.94± 0.5
ViT LAS (ours) 30 0.98± 0.2 0.95± 0.5

7 Discussion

The experimental results emphasise the crucial role of Transformers and ad-
vanced loss functions in addressing the challenges of plankton image classifica-
tion. Our approach demonstrated a 0.12% improvement in the F1-score for the
minority class—a notable achievement given the severe class imbalance typically
found in such datasets. This gain underscores the effectiveness of integrating
ViT models with the Label-Aware Smoothing (LAS) loss function, highlighting
their capability to manage complex, imbalanced data distributions.

Marine particle classification, especially differentiating between the key classes
copepod, detritus, and non-copepod presents a significant challenge due to the
skewed distribution and high variability within these categories. Our methodol-
ogy capitalised on cutting-edge techniques such as transfer learning and long-tail
learning strategies to tackle this highly imbalanced dataset. By integrating pre-
trained ViT and BEiT architectures with advanced long-tail recognition (LTR)
loss functions, our model achieved substantial performance gains. Specifically,
the proposed ViT-LAS approach achieved an overall F1-score of 98%, with an
impressive 95% F1-score for the tail class (non-copepods), a considerable im-
provement over the traditional ResNet model. In comparison, while ResNet at-
tained an overall F1-score of 93%, it struggled with the non-copepod category,
achieving only 83%.

These results align with existing literature comparing transformer-based mod-
els and convolutional neural networks (CNNs) in imbalanced classification tasks
[8, 26, 32]. Research consistently shows that ViT models, leveraging their global
attention mechanisms, excel at extracting features from underrepresented classes,
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leading to superior performance in settings characterised by severe class imbal-
ance. Additionally, the LAS technique complements this by reducing bias towards
majority classes and mitigating overfitting, which aligns with our observed im-
provements.

The integration of ViT with LAS and LTR strategies within an end-to-end
trainable framework not only enhances overall classification accuracy but also
significantly improves the performance of minority classes. This is particularly
valuable in scenarios involving complex visual data with high intra-class vari-
ability.

8 Conclusion

Marine scientists studying pelagic ecosystems face significant challenges in man-
aging and analysing vast imagery datasets from diverse habitats and multiple
imaging systems. Automated camera-based sensors are extensively utilised in
vessel-based research to monitor plankton and marine particles. Despite their
utility, annotating data for fully supervised learning in plankton grouping tasks
is costly and time-intensive. In response, real-time and open-source software
can be adapted to classify images of other marine objects and species, helping
transform how scientists study the oceans. This opens the door to a new era of
monitoring beyond plankton, where measured variables can be seen in real-time,
thus allowing for sampling to be adapted according to visible changes. Studying
changes in community structures and biodiversity as they happen will help fur-
ther our understanding of what drives changes in biodiversity and community
structures within the environment, thus increasing our ability to use our seas
sustainably.

Looking ahead, we plan to enhance our methods for analysing marine plank-
ton in real-time at a higher taxonomic resolution and revising biodiversity from
a computer vision perspective to tackle the DSS problem. This project fo-
cuses on developing a sensor-agnostic method to generalise edge-AI performance
across different ecological habitats and adapt to changing and upgraded camera
systems. By utilising foundation models and self-supervised learning methods,
we aim to address the limitations of traditional machine learning approaches
that require retraining to accommodate new camera systems. These advanced
techniques will enable consistent categorisation of particles, even when camera
systems change, without the need for extensive retraining of machine learn-
ing models. In future work, we will go up in the taxonomist tree and use the
self-supervised learning method, which was more robust than the supervised
method [25,41].

9 Code availability

The code we used to train and evaluate our models is available at
https://github.com/noushineftekhari/ViT-LASNet

https://github.com/noushineftekhari/ViT-LASNet
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