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⋆⋆

Abstract. This study introduces a pipeline designed to aid biologists
via automatic detection and biometric analysis of marine animals. Our
approach uses detection transformer (DETR) to detect subjects in an
image, then generates a segmentation mask over the animal. We also in-
troduce a new method to measure the center line of segmentations, which
can be used to assess length during tail movement of animals in images.
We test our system on a new dataset of aerial drone imagery of Pacific
Nurse Sharks (Ginglymostoma unami). The detection model was trained
on a dataset of drone-captured images under diverse environmental con-
ditions of varying water clarity and lighting conditions, achieving a recall
of 0.96 and precision of 0.80 at an IOU of 0.35. Notably, our method does
not require labeled segmentations or keypoints in the dataset, as we find
Segment Anything Model (SAM) has strong zero-shot performance. The
efficiency of the pipeline was benchmarked against non-expert human
annotators, showing a 91% decrease in data analysis time.

Keywords: Object Detection · Biometrics · Ecology

1 Introduction

The physical attributes of individual marine animals, such as body length, age,
and body condition are critical indicators of their overall ecology and physiology
[4, 42]. Studying biometrics at the individual level can be key to estimating
population health and how it changes over time [10,35,40]. Long-term monitoring
of these metrics is key to understanding how animal populations are responding
to potential environmental shifts such as climate change or human disturbance
[4, 40]. However, measuring biometrics of large marine animals is challenging
as they can be difficult to approach and physically measure in their natural
habitats. In this study, we present a new method for automatically estimating
shark length, width, and age from aerial imagery. The pipeline was tested on
⋆⋆ †These authors all contributed to this work equally and are all considered first au-
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aerial imagery of Pacific Nurse Sharks Ginglymostoma unami in Santa Elena
Bay, Costa Rica.

Santa Elena Bay is a marine protected area (MPA) in northwestern Costa
Rica (Figure 1) harboring several endangered marine species including sea tur-
tles, whales, and black coral [11]. The recently described and endangered Pacific
Nurse Sharks Ginglymostoma unami are also known to aggregate in the bay,
and as a newly described species their behavior is particularly poorly under-
stood [13]. Pacific Nurse Sharks are challenging to study because they are highly
mobile and elusive. Works such as [29] and [17] use a variety of remote sensors
including underwater cameras and acoustic tags to track and study these cryptic
animals throughout their habitats. However, collecting and analyzing this data
is laborious and requires significant manual effort. We aim to supplement this
research through automatic analysis of manually collected drone imagery.

This research has important ramifications for the MPA and biodiversity in
the region. Pacific Nurse Sharks are sometimes found in aggregations of up to 50
individuals, and these aggregations are of particular biological interest since they
are potentially relevant for regulation of the social behavior, and courtship of the
sharks [29]. This work will help assess factors affecting the unique aggregation
behavior, how climate change could potentially affect the species, and the efficacy
of the MPA.

In this paper, we present a pipeline for biologists to automatically detect
marine animals from aerial drone imagery and compute the length, width, mass,
and age of each animal. To do so, we benchmark several SoTA object detectors,
which prompt a downstream SAM mask [26]. Then we use a custom heuristic
algorithm to calculate shark biometrics. We test our pipeline on a new dataset
of Pacific Nurse Shark drone imagery.

Fig. 1: We curated a dataset for detection and biometric analysis of Pacific Nurse
Sharks from aerial imagery. The dataset contains 18,400 images for detection. This
includes 1,194 images suitable for biometric analysis where the shark is fully visible.
Note: images in the biometrics dataset figure are cropped for clarity.
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2 Related Work

2.1 Object Detection

Convolutional Neural Networks (CNNs) have been the foundation of most ad-
vances in image recognition and object detection over the past decade [28]. CNNs
automatically learn hierarchical feature representations from raw image data,
which has proven effective for a wide range of image recognition tasks [1]. The
initial layers capture basic image features like edges and textures, while deeper
layers learn more complex features specific to the objects within the images.

Two-Stage Object Detectors, built on the architecture of CNNs, have been
pivotal in advancing object detection. These models, such as R-CNN and its
more advanced successors, Fast R-CNN and Faster R-CNN, prioritize detection
accuracy [6, 19, 32]. The two-stage process involves first generating region pro-
posals where objects might exist and then classifying each proposal into object
categories while refining bounding box coordinates. Models like Faster R-CNN
integrate these stages by introducing a Region Proposal Network (RPN) that
shares full-image convolutional features with the detection network, significantly
speeding up the process while maintaining high accuracy. This architecture is
particularly beneficial in scenarios requiring precise localization and detailed
contextual understanding.

In contrast, One-Stage Object Detectors such as YOLO (You Only Look
Once) [25] prioritize inference speed, making them suitable for real-time appli-
cations. These detectors simplify the detection pipeline: they do not require a
separate region proposal step and instead treat object detection as a simple re-
gression problem, predicting classes and bounding boxes for the entire image
in a single pass. While traditionally less accurate than two-stage detectors, im-
provements in network design, training schemes, and integration of context have
narrowed this gap, making them highly competitive.

More recently, the Detection Transformer (DETR) model integrates trans-
formers into object detection [7]. DETR eliminates the need for many hand-
engineered components of traditional object detectors by using a transformer
to perform direct set prediction of object classes and bounding boxes. The use
of global context by the transformer allows DETR to achieve impressive results
rivaling non-transformer architectures [7]. This is particularly useful in scenar-
ios like ours where objects are in close proximity in large groups of sharks or
partially occluded via camera glare, high turbidity, or other sea life.

2.2 Marine Animal Detection from Aerial Imagery

There has been significant effort towards developing aerial UAV systems for
studying wildlife [5, 24, 36]. Several works seek to plan optimal paths for one or
multiple drones to perform aerial surveys in varying environmental conditions
[9, 36], and others explore the efficacy of various sensor modalities for detecting
wildlife [2,34]. Instead, in this work, we focus on developing automated systems
for analyzing existing drone imagery.
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One of the first studies applying neural network to aerial imagery of marine
life trained a vanilla CNN for sea turtle detection [21]. They achieved a precision
of 16.3% and a recall of 76.5% using a threshold value of 0.93 equating to an
f1-score of 0.134. A reason for its poor performance, as hypothesized by [21], was
a lack of a rich internal feature representation caused by the fact that the model
was trained from scratch via their dataset instead of using a transfer learning
approach. This model had weaker performance than subsequent works, likely
due to lack of pretraining and relatively simple model architecture [22,23,38]. In
particular, transfer learning - using a pre-trained CNN with some skip connection
has shown to improve model performance as in [15] where they trained Faster R-
CNN with a ResNet-101 backbone pre-trained on the COCO dataset to achieve
an f1-score of 0.91. Another recent work [37] fine-tuned VGG16, pretrained with
ImageNet, to draw bounding boxes around a variety of different objects including
sharks in the water. Through their approach, they achieved an average precision
of 0.904.

In [44], they propose YOLOv7-sea, an object detector, built from YOLOv7,
for maritime search and rescue missions using UAVs. YOLOv7-sea adds a pre-
diction head to detect tiny objects and integrates the Simple, Parameter-Free
Attention Module (SimAM) to find attention regions. On their dataset, they
achieved 59% average precision across all selected thresholds. With this said,
their focus seems to be on objects that humans use in the water like boats, jet
skis, buoys, and lifesaving equipment.

Pavithra et al. [33] proposes a novel hybrid architecture called SwinCon-
vMixerUNet for underwater image segmentation, combining Swin Transformer
and ConvMixer, leveraging the Swin Transformer’s ability to capture spatial in-
formation and the ConvMixer’s channel-mixing capabilities to enhance feature
extraction and segmentation accuracy. The SwinConvMixerUNet outperforms
all existing models on the SUIM dataset, achieving 84.83% mean intersection of
the union (mIOU). However, their task focuses on the segmentation of all objects
in the scene from images captured underwater.

To the best of our knowledge, at this time there is no existing work applying
recent object detection models to detecting nurse sharks from drone imagery.
This presents an opportunity for increased predictive performance as models
like DETR have achieved state-of-the-art in object detection and many other
downstream applications [16, 27, 39, 45]. However, to our knowledge this model
has not yet been applied to aerial shark imagery.

2.3 UAV-Based Animal Biometrics

Collecting marine animal biometrics from drone imagery is of great interest to
biologists [31, 41]. Open source software packages such as [41] have provided a
semi-automated biometrics workflow for whales, but still require human input
to select keypoints. Bierlich et al. [3] proposed two deep learning models to auto-
mate data collection on whale body size and condition from UAV imagery. The
first model, DeteX, uses the YOLOv5 as a detector to identify images contain-
ing whales. The second model, XtraX, uses key point detection and the Segment
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Anything Model to extract body length and condition measurements from im-
ages selected by DeteX. The authors compared the automated measurements to
manual measurements of 63 gray whales and found that the automated method
was one-ninth as time-consuming and achieved a mean coefficient of variation
of 1.46% between automatic and manual length measurements. In our study,
we seek to collect biometrics of animals including length, width, mass, and age.
Similar to Gray et al. [20], we use segmentation maps and photogrammetry to
estimate these parameters. The aforementioned work used PCA to find the ma-
jor axis of the whale, but this approach would not work for our dataset since
while the tails of whales only deform through camber (dorsoventral undulation),
sharks tails deform through torsion (lateral undulation). This lateral undulation
requires a different approach, hence our design of a custom heuristic described
in section 3.3.

Fig. 2: Biometrics pipeline. Outputs are highlighted in blue.

3 Methods

3.1 Dataset

The imagery was collected from two field sites (Matapalito Beach and Sortija
Beach) in the coastal waters of the Eastern Tropical Pacific Ocean, in Santa Elena
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Bay (Figure 1). The dataset was collected from 2022-2024, over a period of 23
months, with varying water visibility (turbidity), illumination, and wind/wave
conditions. Images were collected at each site by flying a DJI Mavic 2 drone on
a preprogrammed path, recording a continuous video at 30FPS and 3840×2160
resolution. The drone stopped at predetermined waypoints for 3 seconds each
(Figure 1, yellow and orange dots).

More than 6 hours of video was recorded in total, during 60 drone surveys,
resulting in 648,000 total frames captured. For object detection, the dataset
was pruned to include a diverse set of 8 videos from the two sites, across varying
tidal, turbidity, water surface glare, and wave conditions. Ground truth bounding
boxes were added for each Pacific Nurse by two of our team members with the
Computer Vision Annotation Tool (CVAT) [12]. The images from 1 video were
completely separated from the rest of the dataset, as a test for generalization.
The rest of the dataset was time-blocked such that each 45 adjacent frames of
a video were placed into a set, and that set was held together when the data
was split into training, validation, and test sets. This time-blocking was done
to minimize occurrences of consecutive frames being present in the training and
test set, which would artificially inflate models’ performance metrics. Sharks
were present on diverse conditions across videos and time segments, including
variable turbidity and substrate. Prior to model training, images were rescaled
from 3840 × 2160 pixels to 1080 × 1080 pixels. Standard data augmentation
techniques, including random rotation, brightness, and hue adjustments, were
also applied.

Excluding the images from the video held for generalization testing, our ob-
ject detection dataset contained 9200 unique positive examples (images contain-
ing sharks) in our dataset, and a corresponding 27000 unique negative examples
(images containing no sharks). We selected 9200 negative examples to remain in
the dataset, such that our dataset contained an equal ratio of images containing
sharks and images not containing sharks. The dataset was then randomly split
into training, validation, and test sets, in a [80-10-10] ratio, maintaining the
images in the 45-frame time blocks. This dataset contains 18400 total images.

We found that while all labeled sharks were suitable for training object de-
tection models, many frames contained partially occluded sharks. These frames
were not possible to extract ground truth biometrics from, so we therefore cu-
rated a smaller dataset containing 1194 clear shark images suitable for biometrics
as seen in Figure 1.

3.2 Detection Models

In this research, we focused on evaluating a series of models for shark detection,
predominantly leveraging the Detectron2 model library [43]. First, we employed
several RCNN model architectures, a two-stage detector optimized for accuracy
(as opposed to inference speed like many one-stage detectors) [19]. Faster RCNN
architectures are composed of a feature extractor backbone (typically a pre-
trained CNN) followed by a region proposal network to predict object boundaries
and their "objectness" scores, and finally region-of-interest (ROI) pooling to
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extract uniform-sized features. We trained several RCNN with various backbones
(ResNet and ResNeXt architectures) and feature pyramid networks (FPN) to
enhance the effect of objects of various scales in images. All of these models
were pre-trained on the Imagenet dataset [14].

We also implemented DETR which uses a transformer architecture to reason
about all objects in the scene globally, which to our knowledge is the first work us-
ing this model for shark detection from aerial imagery [7]. This setup is expected
to be advantageous for detecting sharks in highly dynamic and complex envi-
ronments. Finally, we trained a single-stage pre-trained YOLOv8 model which
is particularly well suited for real-time detection tasks [25]. The pre-trained
medium YOLOv8 model was trained for 40 epochs using default hyperparam-
eters (until loss converged). DETR was trained for 120 epochs, and the rest of
detectron models were trained for 40 epochs each - all with a maximum of 100
obejcts detected.

3.3 Biometrics

The image and object detection bounding boxes were used to prompt the Seg-
ment Anything Model (SAM) mask predictor [26] to generate a mask containing
shark pixels. We designed a custom algorithm to estimate the length of the shark
along its centerline, robust to the orientation and deformation of the shark, as
follows:

Given a binary mask ∈ {0, 1}m×n, compute the largest contour C and its
convex hull H. Identify the furthest points P1, P2 ∈ H by calculating the pairwise
distances Dij = ∥Hi − Hj∥2 and finding the maximum distance. Divide the
segment P1P2 into n equal subsegments, and for each dividing point Si, compute
the center of mass of the mask ci along the line which is perpendicular to P1P2

and intersects Si. The shark’s length L is calculated as the sum of Euclidean
distances between P1, ci, and P2:

L = ∥P1 − c0∥+
n−2∑
i=0

∥ci − ci+1∥+ ∥cn−1 − P2∥. (1)

To measure the width at each point, we calculated the perpendicular vector
to the centerline at each center of mass point ci. The perpendicular unit vector
ui is defined as:

ui =
1

∥vi∥

(
−viy
vix

)
where vi =

(ci+1 − ci) + (ci − ci−1)

2
(2)

Here, vi is the average direction vector at point i, calculated as the average
of the direction vectors from ci to ci+1 and from ci−1 to ci. The width at point
ci is then measured by extending a line along ui until it intersects the mask
boundaries on both sides of the centerline.

The length L and widths W obtained from the mask, measured in pixels,
were converted to centimeters using the following function, modified from [41]:

Lcm =

(
Sw

Iw
× A+D

F
× 100

)
× Lpixels (3)
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where Sw is the sensor width in mm (13.2 mm for a 1" CMOS sensor), Iw is the
image width in pixels (3840 pixels for 3840x2160p resolution), A is the altitude
of the drone in meters (37 meters), D is the depth of the shark in meters, and
F is the focal length of the camera in mm (28 mm). We assumed a constant
depth D of 1.5 m for this analysis, since nurse sharks were typically observed
at approximately 1.5 m depth in snorkeling surveys in Santa Elena Bay. In
the future, benthic animal position extracted from camera metadata could be
collocated with bathymetry data to improve the accuracy of the depth estimate.
The pixel dimension in mm per pixel is calculated as the ratio of the sensor
width to the image width. This is converted to meters per pixel, and then the
Ground Sampling Distance (GSD) in meters per pixel is calculated. Finally, the
GSD is converted from meters per pixel to centimeters per pixel to determine
the length and widths in centimeters.

We used length to estimate shark age and mass. To estimate the age, we
utilized the von Bertalanffy (vB) growth function with known coefficients for
the nurse shark [8, 18]. Mass was estimated using a combined mass model for
nurse sharks [30]. The full biometrics pipeline is visualized in Figure 2.

4 Experiments and Results

4.1 Object Detection

We tested our suite of models on an internal test dataset to assess the models’
ability to learn representations, as well as a previously-unseen external hold-
out video taken on a different day to assess the generalizability of the model.
Testing the models on both datasets gauges potential overfitting on previously-
seen data, while also evaluating for practical usage on drone imagery from new
distributions.

Among the models, YOLOv8 and DETR performed the best on the inter-
nal holdout test set across all metrics, including mean Average Precision and
Average Recall from IOU thresholds between 0.5 to 0.95 and Average Precision
and Average Recall at IOU thresholds of 0.35 and 0.5. The exact precision and
recall values are shown in Table 1. YOLO had the highest mAP as well as the
highest mAR, with DETR performing slightly better at lower IOU thresholds.
Both of these performed better than the trained Faster R-CNN models with Fea-
ture Pyramid Network and Dilated-C5 backbones. It is important to note that
although mAP averaged between 0.5 and 0.95 are traditionally used as perfor-
mance metrics for object detection models, we found that it is not necessary for
predicted bounding boxes to have a high IOU with ground truth boxes in order
to obtain accurate results on downstream biometrics methods. Thus, although
both YOLO and DETR had a relatively low mAP and mAR of 0.63 and 0.70,
performance at a lower IOU threshold of 0.35 was significantly higher—with
DETR achieving a near-perfect AP and AR of 0.94 and 0.99, respectively.

As expected, the performance of both YOLOv8 and DETR declined when
tested on a completely separate video, with a mAP of 0.22 obtained for YOLOv8
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and a mAR of 0.40 obtained for DETR, as seen in Table 2. Similarly, the precision
and recall at lower IOU thresholds were significantly higher and proved to be
sufficient for deriving downstream biometrics. The DETR model performed the
best at an IOU threshold of 0.35, with an average precision of 0.80 and an average
recall of 0.96. A higher recall was heavily prioritized for this shark detection task,
with the identification of all sharks crucial given the ease of manual removal of
potential false positives.

Table 1: Performance Metrics of Various Object Detection Models on a holdout test
set. Best performance for each metric in bold, with larger values indicating higher
average precision and recall.

Model mAP@[0.5:0.95] AP@0.35 AP@0.50 mAR@[0.5:0.95] AR@0.35 AR@0.50
YOLOv8 0.63 0.93 0.92 0.70 0.97 0.97

Faster R-CNN X101-FPN 0.48 0.63 0.61 0.70 0.99 0.60
Faster R-CNN R101-DC5 0.29 0.43 0.43 0.35 0.43 0.41

DETR 0.43 0.94 0.90 0.58 0.99 0.97

Table 2: Performance Metrics of YOLOv8 and DETR on holdout video. Best perfor-
mance for each metric in bold.

Model mAP@[0.5:0.95] AP@0.35 AP@0.50 mAR@[0.5:0.95] AR@0.35 AR@0.50
YOLOv8 0.22 0.77 0.64 0.34 0.79 0.73
DETR 0.14 0.80 0.53 0.40 0.96 0.85

The effect of IOU between the predicted and ground truth boxes versus recall
was studied for YOLOv8 on the holdout video, as shown in Figure 3. We see that
the recall is stable through an IOU threshold of 0.4, then rapidly declines as IOU
increases. This shows that we detect nearly 80% of the sharks in the holdout video
at lower IOU values, thus motivating the non-standard AP and AR calculations
at an IOU of 0.35. Precision-recall curves were generated for YOLOv8 and DETR
to study the overall performance at this lower IOU threshold on the internal
and external test datasets (see Figure 4). We see that both models performed
better on the internal dataset, with high precision and recall achieved at lower
confidence thresholds. Similarly, both YOLOv8 and DETR had relatively high
performance on the holdout video, excluding low precision at lower confidence
thresholds. These results show the large number of low-confidence predictions
for both models under a confidence threshold of 0.2, with high precision and
recall maintained at higher confidence values.

Although both models had high accuracy at lower IOU thresholds, DETR
outperformed YOLOv8 on the holdout video with a nearly perfect recall of 0.96
on completely unseen data. Beyond a confidence threshold of 0.25, precision was
maintained; thus all further biometric analysis was performed using YOLOv8
predicted bounding boxes with a confidence threshold of 0.25.
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Fig. 3: Recall vs. IOU threshold for YOLOv8 on the holdout video

4.2 Biometrics

We compared the performance of our approach to manually measured shark
lengths from a randomly selected subset of photos (n = 122) containing sharks
from the holdout video. We benchmarked our approach based on percent error
and coefficient of variation (CV, following Bierlich et al [3]) between the manually
measured and automatically measured shark lengths for each image. In total,
we found that SAM, when prompted with YOLOv8 predicted bounding boxes,
successfully generated correct segmentations on 71% of the photos (n = 87),
while it failed to generate a correct segmentation on 29% of the photos (n =
35). Examples of successful and failed segmentations are found in (Figure 5
(b) and (c)). The manually-sorted criteria for successful segmentation are that
the shark is included in the segmentation mask symmetrically about its true
centerline, and that there are no erroneous inclusions (shadows, surface glare) or
exclusions (tip of the tail, a single pectoral fin) in the mask. We report results for
the automated and manual measurements for the images that SAM generated
correct shark segmentations. All length measurements had a CV < 8%, with
an average CV between automatic and manual length measurements of 2.71%
(n = 87, median = 2.70%, SD = 1.54%, maximum = 5.55%) (Figure 5 (a)).
Likewise, the length measurements had a percent error < 12%, with an average
percent error between manual and automatic measurements of 5.54% (n = 87,
median = 5.56%, SD = 1.54%, maximum = 11.76%. This represents only a
slight decrease in performance compared to ground truth bounding boxes (from
which measurements had an average CV of 2.31%), showing that exact bounding
box predictions are not necessary for prompting accurate segmentations from
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Fig. 4: Precision-Recall curves for models on internal and external test datasets. (a)
YOLOv8 on internal test set. (b) DETR on internal test set. (c) YOLOv8 on holdout
video. (d) DETR on holdout video.

SAM. On average, the automatic measurements overestimated length by 2.47
cm (n = 87, median = 2.79 cm, SD = 3.91 cm, minimum = -8.48 cm, maximum
= 7.69 cm). The average percent error between manual-length derived mass
estimates and automatic-length derived mass estimates was 11.85% (n = 87,
median = 11.81%, SD = 6.97%, maximum = 26.09%). The average CV for
mass estimates was 5.64% (n = 87, median = 5.63%, SD = 3.20%, maximum
= 11.54%). Similarly, the average percent error between manual-length derived
age estimates and automatic-length derived age estimates was 9.23% (n = 87,
median = 9.45%, SD = 5.36%, maximum = 19.91%). The average CV for age
estimates was 4.45% (n = 87, median = 4.51%, SD = 2.53%, maximum = 9.05%).

4.3 User comparisons

To compare the accuracy and speed of our shark detector to a non-expert human,
we randomly drew 100 samples from the holdout video dataset with an even ratio
of positive and negative examples. After showing the person examples of negative
and positive examples, and basics of CVAT labeling workflow, they labeled the
dataset of 100 samples. We found that the human had a classification precision
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Fig. 5: (a) Manual and automatic length measurement results. The dashed red line
represents a 1:1 ratio. Points are colored by coefficient of variation percentage (CV %),
where lighter color points indicate a higher CV. (b) and (c) include manual (green)
and automatic (red) polylines used to measure the length of each shark. (b) Example
failure cases of SAM segmentations, from top to bottom: Missing the end of the tail,
segmenting a shadow, and segmenting only one pectoral fin. (c) Examples of successful
SAM segmentations and length measurement.

of 0.94 and a recall of 0.83 on the dataset. Our best model had a classification
precision of 0.8 and a recall of 0.96 on the same dataset. The human took an
average of 10.5 seconds per frame, while the model only takes an average of
0.25 seconds on an NVIDIA A10 GPU. The annotator also measured sharks
in 100 images using the CVAT polyline tool in approximately 50 minutes, so
on average, it took a human annotator 40.5 seconds on average to detect and
measure the sharks in each frame. In contrast, the automatic biometrics pipeline
takes an average of 3.75 seconds per image on an NVIDIA A10 GPU. These
preliminary results show our model takes 91% less time than a human to perform
inference and shark measurement, while achieving human-level performance on
classification recall and measurement accuracy.

5 Conclusion

In this study, we develop a new pipeline which significantly improves the effi-
ciency of studying Pacific Nurse Sharks (Ginglymostoma unami) through aerial
drone imagery. We benchmark several SoTA object detection models such as
YOLOv8, Faster R-CNN, and DETR, and conclude that DETR performed the
best - enabling 91% faster data processing than manual annotation methods. To
our knowledge, this is one of the largest datasets of nearshore shark aerial drone
imagery, and the first shark detection work using DETR.
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We also demonstrate the efficacy of the pre-trained SAM model on segment-
ing sharks when prompted by bounding boxes. Using a custom heuristic, we
analyze SAM masks to compute marine animal length, width, mass, and esti-
mated age—which are essential for understanding shark population demograph-
ics. We found that SAM generated successful segmentations 77% of the time.
On 27 randomly sampled images from our biometrics dataset, our length heuris-
tic had a 2.39% average CV from the manual labels. Our biometrics heuristic,
when combined with the shark detection model, provides researchers a way to
automatically estimate shark length to centimeter-scale accuracy from drone im-
agery. However, there are limitations and opportunities for improvement for the
biometrics pipeline. The primary limiting factor is the accuracy of the segmen-
tation, as that has downstream effects on the length and width prediction. In
turbid water, often the pectoral fins of the shark and the tail will be left out of
the segmentation, or the end of the tail will be segmented separately from the
rest of the body. Also, when the shark is swimming above the bottom, SAM will
sometimes segment the shadow of the shark instead of the shark itself (Figure 5
(b)). For simplicity, our photogrammetric analysis did not include the variable
depth of water the sharks are swimming in, the variance in drone altitude, or
corrections due to refraction at the air-water interface, but all of these consider-
ations could feasibly be added if additional measurement accuracy is required.

A key feature of our work is the centerline estimation heuristic, which is novel
for marine animals and has broad applicability beyond just measuring nurse
shark biometrics. This method is not only valuable for length measurements but
also for animal pose estimation, enabling researchers to compute important new
metrics such as tailbeat frequency and amplitude.

Future work in object detection will involve testing different data augmenta-
tion approaches and exploring different DETR variants. There remains a large
amount of unlabeled shark video data in our dataset, so including a wider swath
of this data in the training will likely improve detection results. Further devel-
opment on the biometrics pipeline will incorporate object tracking to maintain
the identity of sharks between frames, which would allow biologists to observe
a shark’s speed, tailbeat frequency, tailbeat amplitude, and other kinematic ob-
servations from aerial imagery. These observations are particularly relevant for
understanding shark behavior and physiology on a fine scale, and they would
allow biologists to quantitatively study the movement patterns of sharks in ag-
gregations. By finetuning SAM on labeled segmentation data, we can extract
better masks to feed into the biometrics heuristic, which will improve the qual-
ity of results for kinematic observations, which otherwise would require laborious
data labeling efforts.

6 Examples

An output video generated from our shark detection and biometrics pipeline can
be found in on YouTube.

https://www.youtube.com/watch?app=desktop&v=KaFGO-tOQEw&feature=youtu.be&ab_channel=MarkLeone
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