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Abstract. Continuous inspection and mapping of the seabed allows for
monitoring the impact of anthropogenic activities on benthic ecosystems.
Compared to traditional manual assessment methods which are imprac-
tical at scale, computer vision holds great potential for widespread and
long-term monitoring. We deploy an underwater remotely operated vehi-
cle (ROV) in Jammer Bay, a heavily őshed area in the Greater North Sea,
and capture videos of the seabed for habitat classiőcation. The collected
JAMBO dataset is inherently ambiguous: water in the bay is typically
turbid which degrades visibility and makes habitats more difficult to
identify. To capture the uncertainties involved in manual visual inspec-
tion, we employ multiple annotators to classify the same set of images and
analyze time spent per annotation, the extent to which annotators agree,
and more. We then evaluate the potential of vision foundation models
(DINO, OpenCLIP, BioCLIP) for automating image-based benthic habi-
tat classiőcation. We őnd that despite ambiguity in the dataset, a well
chosen pre-trained feature extractor with linear probing can match the
performance of manual annotators when evaluated in known locations.
However, generalization across time and place is an important challenge.

Keywords: Seabed monitoring · Benthic habitats · Label uncertainty

1 Introduction

Seabed integrity is challenged by anthropogenic activities causing habitat degra-
dation such as fishing, mining and quarrying, and sustainable energy construc-
tion [19, 28, 38]. In the European Union, multiple directives are implemented
to protect seabed integrity. The Marine Strategy Framework Directive requires
member states to achieve Good Environmental Status (GES) in marine habi-
tats [13] and the Habitat Directive and Nature 2000 focus on preserving species
and habitats in Marine Protected Areas [10]. We specifically focus on Jammer
Bay in the Greater North Sea (Skagerrak ICES area), a region heavily impacted
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Fig. 1: Satellite view of the 16 data collection locations, color-coded by acquisition
date and with image examples on the right. Map data from OpenStreetMap.

Deploying the ROV Travelling to the seabed Seabed captures Heading back to the surface

Fig. 2: Illustration of the recording procedure from deploying the ROV, diving to
the seabed, capturing video data of the benthic habitats, and, lastly, returning to the
surface. Only the data captured at the seabed is used in this project.

by human activities and thus crucial for management. Despite being included
in the Marine Strategy Framework Directive and encompassing several Marine
Protected Areas, monitoring efforts in this region are limited.

Monitoring the seabed requires comprehensive, systematic and reproducible
data collection methods. Compared to sediment sampling which is invasive,
costly and highly localized, recording and analysing video footage is a promising
technique for marine biologists [1, 6, 7, 25, 34, 43, 45–47]. When combined with
computer vision methods, imaging technology provides unprecedented possibil-
ities to enhance and automate underwater monitoring [4, 5, 32].

Developing underwater image classifiers requires labelled data for training
and evaluation [39]. While there is a growing number of underwater datasets
for species identification [29, 35, 48], publicly available and annotated datasets
of seabed habitats are much scarcer. The recently released BenthicNet [31] is a
large-scale compilation of seabed imagery from different sources worldwide. How-
ever, the majority of labelled images are from Australia and Tasmania, with coral
reefs and clear waters [15,26]; the only labelled images from European waters are
in Spain. It is important to establish reference datasets in other environments
targeted by anthropogenic activities. In Denmark, the main source of visual data
for benthic habitats is the marine raw material database (MARTA) [21] - how-
ever the images are mostly provided uncurated, unlabelled, or in poor quality.

To address this gap, we present the JAMBO dataset - the first publicly avail-
able multi-annotator benthic habitat classification image dataset from temper-
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ate waters. We deploy an underwater remotely operated vehicle (ROV) equipped
with lights and cameras to capture footage of the seabed in Jammer Bay. Each
curated image is labelled by six annotators with different backgrounds and ex-
pertise. Their task is to distinguish between sandy substrates and stone reef, or
to mark the image as “bad”. Analysing their disagreement allows us to evalu-
ate the difficulty and ambiguity of classifying benthic habitat types from ROV
images in this area. We then evaluate several baseline models, leveraging pre-
trained vision transformers for feature extraction. To the best of our knowledge,
this constitutes the first study of annotator disagreement and automatic benthic
habitat classification in turbid environments resembling Jammer Bay.

2 The JAMBO Dataset

This section provides details on the data collection and annotation procedures.
The JAMBO dataset can be found at https://vap.aau.dk/jambo.

2.1 Data Acquisition

The study took place in Jammer Bay, a part of the Greater North Sea off the
Northwestern coast of Denmark, see Fig. 1. The water depths ranges from 14
to 34 meters at the study sites. The environmental conditions in the area is
affected by the North Atlantic drift and currents are generally moving from
South to North along the Danish West coast. These conditions, combined with
weather and re-suspended particles, produce high degrees of variance in under-
water turbidity and visibility. Relevant dive sites were determined by selecting
three regions of management importance (commonly frequented by beam trawl,
otter trawl, and Danish seine) and with limited habitat knowlegde, coupled with
the utilization of a side-scan sonar to pinpoint areas featuring a combination of
sandy substrates and stone reefs.

Data was collected with a Chasing M2 Pro Max underwater ROV featuring a
4K resolution front-facing camera solely used for navigation. A GoPro Hero Black
11 camera was mounted beneath the drone at a 45-degree angle to continuously
record the seabed. Two 4000 lumen lights were placed in a downwards-facing
position, spaced far apart, and angled in a way that ensured the seabed to be il-
luminated in the field of view of the GoPro camera while minimizing backscatter.
Camera settings and a picture of the ROV can be found in Appendix A.1.

Recording was initiated prior to submerging the ROV into the water and
continued until it resurfaced at the boat as illustrated in Fig. 2. Therefore, the
videos included several stages, from deployment to recovery of the ROV, lead-
ing to a significant amount of data not suitable for benthic habitat classification.
Each dive lasted 20-30 minutes and approximately seven hours of video data was
recorded in total. We conducted manual curation to identify the relevant seg-
ments where the ROV was in proximity of the seabed. Subsequently, we carefully
reviewed the remaining footage to locate and remove erroneous segments, e.g.,
if the seabed was not in the camera’s field of view due to navigation. A frame

https://vap.aau.dk/jambo
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was extracted for every two seconds from 12 video segments, resulting in a total
of 3290 frames to be annotated. Frames were center-cropped at a resolution of
2048x1024 to exclude lens distortion effects from the image.

2.2 Annotation Scheme

The material that makes up the sediment and substrate of a given habitat plays
a vital role in the classification procedure [11] (referred to as level 2 in the Eu-
ropean nature information system (EUNIS) hierarchy). The noise and lighting
from the ROV may affect the behavior of organisms, potentially leading to es-
cape responses, which complicates classification procedures that consider flora
and fauna (level 3 and above in the EUNIS hierarchy). Thus, the aim is to
build a pipeline for automatically classifying the primary material of the seabed.
However, determining the true habitat type from visual inspection of images
from Jammer Bay is not trivial due to the turbid and low light conditions in
the area. Therefore, we have defined two general habitat types covering Jammer
Bay, based on the EUNIS key navigation [18] and GEUS habitats definitions [30],
resulting in the following class labels:

– Sand habitats are characterized as primarily sand or muddy sand with less
than 5% clay and less than 30% cover of stones/boulders, vegetation, and
mussel beds. The habitat is stable but under the influence of tidal streams,
waves, and turbidity. This habitat classification is modified from the EUNIS
classification MC52 Atlantic circalittoral sand [17] and corresponds to the
’sand dunes’ habitat as defined by GEUS [30].

– Stone reef habitats are characterized by having more than 30% seabed cover
of stones and boulders and are to some extent affected by tidal streams,
waves, and turbidity. This classification is modified from the EUNIS clas-
sification MC12 Atlantic circalittoral rock [16] and corresponds to GEUS’
‘reef’ classification [30].

– Bad is a class used to label images that cannot be confidently annotated as
containing one of the aforementioned habitat types by the annotator due to
poor image quality, turbidity, or similar.

To investigate the uncertainty involved in labeling images of benthic habitats
in turbid waters, we asked six annotators to annotate the same set of images. The
group of annotators consisted of three marine biologists (Bio1, Bio2, Bio3 ) and
three computer vision researchers (CV1, CV2, CV3 ) who were all familiar with
the framework for classifying habitats, while the level of background knowledge
regarding habitat classification varied among the annotators. One participant,
Bio1, was a field expert with knowledge about the habitats in the Jammer Bay
area and was also acquainted with the videos. The other two marine biologists,
Bio2 and Bio3, were not acquainted with the videos but had prior knowledge
about marine habitats in general. The three computer vision researchers, CV1,

CV2, and CV3, had viewed and processed the videos during the initial sorting
phase but had no experience with marine habitat classification.
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Fig. 3: Dataset samples illustrating variations in turbidity, lighting, and texture of the
seabed. These images were unanimously labelled as sand (top), stone (middle) or bad
(bottom) by all annotators.

Images were displayed to the annotators at a fixed size of 1920x960, with
different monitors used across annotators. For each image, we stored the class
label assigned by each of the annotators, as well as the time spent assigning
the label. Image examples from the three categories are presented in Fig. 3
showcasing some of the variations encountered within and between the classes.

2.3 Dataset analysis

To gain insights into the characteristics and quality of the collected data, we
first perform an analysis of the image content and manual annotations. We
investigate the level of agreement between annotators as well as discrepancies
between them, shedding light on the ambiguity associated with image-based
habitat classification. We quantify the prevalence of sand vs. stone reefs, the
proportion of bad images, and the time spent on manual annotation.

Annotator Agreement - Each image in our dataset is associated with
six labels (one from each annotator). Its majority label is taken as the most
frequent label; in cases where 2 or 3 classes appear with the same frequency
across annotators, the majority label is chosen at random. We quantify the level
of annotator agreement for every image by taking the ratio of annotators who
chose the majority label to the total number of annotators involved (six). For
example, if three annotators labeled an image as sand while the remaining three
selected different labels, the agreement level would be 50%. As illustrated in
Fig. 4a, complete label agreement was observed for 2431 images (73.89% of the
dataset), while high disagreement was noted for 209 images (6.35%). We see a
notable prevalence of sand habitats, accounting for 82.67% (2720 images) of the
data. Conversely, stone habitats are less frequently encountered, comprising only
11.88% of the dataset (391 images), resulting in a stone-to-sand ratio of 14.38%
(almost 7 sand images for every stone image). A subset of 179 images (5.44%)
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Fig. 4: Quantitative analysis of inter-annotator agreement.

has been categorized as bad by the majority of annotators, but only a small
number (6) of images were unanimously labeled as bad. The graph presented in
Fig. 4b elaborates this point by providing an indication of the uncertainty level
for each of the classes. The vertical axis represents the proportion of images
with respect to the number of images having at least one label of the given
class, while the horizontal axis denotes the minimum number of labels present.
Notably, approximately 75% of the sand images received unanimous labeling by
all annotators, whereas for the stone images, this proportion is less than 50%.
Additionally, the bad images show minimal unanimity among annotators.

On average, an image takes less than a second to annotate and sand images
tend to be the most quickly identified. More time is spent labeling stone images,
while ambiguous or low-quality images subject to the bad class, take the longest
time to annotate. Looking at the time spent per label across three agreement
levels, we see that images unanimously labeled by all annotators require the
least processing time, as depicted in Fig. 4c. This trend holds true for all three
classes, with noticeably less variation in the time spent annotating images when
everyone agrees compared to when there are discrepancies between annotators.

In summary, this suggests that annotating stone images poses a greater chal-
lenge than sand images. This complexity may arise from uncertainties in assess-
ing variables such as the extent of stone coverage on the seafloor or correctly
identifying objects within the frame (is it actually a stone?). Conversely, sand

images seem to present fewer interpretative difficulties, likely attributable to
their relatively clean nature.

Comparing Individual Annotators - We examine the class distribution
at the annotator level to identify potential disparities attributable to educational
background. Initially, we look at Fig. 5a, which shows the proportion of images
that have been assigned the respective classes by each of the six annotators.
We see that Bio1 and CV2 were the least likely to label an image as bad, but
had a significant difference in the number of images labeled as stone. The same
pattern is seen between Bio2, Bio3 and CV3 who agree on the number of bad

images, while the sand-to-stone ratio varies. Generally, the sand-to-stone ratio
varies across annotators from 10.17% (Bio1 ) to 19.31% (Bio2 ) and there is no
clear link between the class ratios and the background of the annotator.
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Fig. 5: Quantitative analysis of individual annotation patterns.

Taking a closer look at the pair-wise agreement between the individual an-
notators, we see the same pattern, which is quantified in Fig. 5b. The general
tendency is an agreement level close to 90%, except for CV1 who is more likely
to disagree with the rest, with an average agreement level of 84.26%. However,
CV1 is also the annotator with the highest number of bad labels, which could
partially explain this pattern. Interestingly, there appears to be no discernible
correlation between the background of the annotators and their agreement re-
garding classifications; annotators with a computer vision (CV) background are
not necessarily more likely to agree with each other than with annotators spe-
cialized in marine biology (Bio), and vice-versa. Bio1 and Bio3 are the most
likely pair of annotators to agree, but no pair exceeds 91% of matching labels.

Besides looking at the distribution of classes, the time spent annotating the
images provides further insights regarding the labeling patterns of the individual
annotators. In Fig. 5c we can see that the time spent per image varies both
depending on the class and the individual annotator. Annotators who are the
most conservative with assigning the bad label (Bio1, Bio2 and CV2 ) take the
longest time to do so with more than a second on average. On the contrary, CV1,
who labeled more than 14% of the images as bad, typically completed this task
in less than one second, suggesting less tolerance for ambiguity. Across all classes
and annotators, we see outliers that take significantly longer time to annotate,
which suggests a higher label uncertainty for a subset of the images.

Nine concrete examples with varying levels of agreement between the anno-
tators are presented in Fig. 6. The first column contains three images with full
agreement. Images (A) and (B) contain little motion blur and include salient
features of the seabed, leading to a unanimous labeling of sand and stone, re-
spectively. In image (A), the seabed is predominantly composed of sand with
few small stones, while in image (B), a prominent overgrown stone is visible
despite the backscatter caused by resuspended particles. The challenges posed
by motion blur, low light conditions, and a scarcity of distinct features render
the interpretation of image (C) challenging, resulting in a unanimous bad label.

The second column contains images where the majority of the annotators
agree on one of the classes. Image (D) contains some motion blur but is other-
wise of decent quality with a reasonable amount of light and low turbidity. The
image contains a blurred dark object in the lower right corner, smaller stones
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A

Bio1 Bio2 Bio3 CV1 CV2 CV3

B

Bio1 Bio2 Bio3 CV1 CV2 CV3

C

Bio1 Bio2 Bio3 CV1 CV2 CV3

(a) Full agreement (100%).

D
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(b) Medium agreement (≥ 50%).

G

Bio1 Bio2 Bio3 CV1 CV2 CV3

H

Bio1 Bio2 Bio3 CV1 CV2 CV3

I

Bio1 Bio2 Bio3 CV1 CV2 CV3

(c) Low agreement (< 50%).

Fig. 6: Image examples for different agreement levels across the six annotators. The
slots in the colored bars represent the label assigned by Bio1, Bio2, Bio3, CV1, CV2,

and CV3, respectively. The green, blue, and red colors represent sand, stone, and bad.

scattered across the seabed, and no distinct sand ridges. These are all factors that
are assumed to contribute to the contradictory labels with four votes on sand

and two on stone. In the second row, image (E) has been labeled as stone by the
majority, but has also been assigned a bad and sand label. The label discrepancy
is likely due to the image being affected by heavy backscatter, while simultane-
ously featuring a distinct stone in the center of the image and relatively clear
sand ridges. Image (F) is uniformly dark, making it ambiguous whether the back-
ground is the seabed or turbid water. Additionally, there are no distinct habitat
markers, except for subtle wave-like patterns in the bottom half (possibly sand
ridges) and some salt- and pepper-like spots, which can be interpreted either as
particles in the water, or small stones or shells on the seabed.

The last column features images with low annotator agreement. The first
image, (G), is labeled as sand (2) or bad (1) by the marine biologists, whereas
the annotators with a background in computer vision label it as stone (2) or bad

(1). Most of the image is uniformly sandy colored and there is a decent amount
of backscattering particles. However, in the upper left corner, there is a structure
that may be interpreted as a formation of rocks, which is assumed to be the cause
of the label discrepancy. We defined no label for abandoned fishing nets and this
is likely causing some confusion when labeling image (H). The image is of decent
quality with good lighting and only little backscatter, however some observers
may view part of the structure as being stones or expect the net to be entangled
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in stones, while others classify the image based on the sandy right part of the
image and ignore the net. Image (I) is blurry and contains few features, except
for bright spots, which may be interpreted as either stones or shells.

In summary, after examining the dataset’s images, and as exemplified by the
images in Fig. 6, we identify three primary motivations for assigning the bad

label, all contributing to the complexity of image-based habitat classification:
(1) issues related to image quality such as darkness, blur, or heavy backscatter
(2) objects obscuring the seabed (such as ghosts nets) and (3) a lack of salient
features. Disagreement between sand and stone appears to be influenced by
different interpretations of what 30% stone coverage looks like. Distinguishing
between small stones, suspended particles, or organisms on the seabed can be
difficult, especially when images are blurred and lack distinctive features.

3 Benthic Habitat Classification

3.1 Experimental set-up

We describe the models used for classifying JAMBO images along with the
evaluation procedure.

224x224

1024x2048

feature

extractor

pre-processing

classifier

sand

stone

bad

Fig. 7: A pre-trained encoder converts the high-dimensional input image into a 1-
dimensional vector capturing its essential characteristics. This feature vector is fed to
a linear classiőer trained on the JAMBO dataset, which outputs the predicted class.

Models - We apply a three-step pipeline to automatically classify the seabed
images, as illustrated in Fig. 7. First, images are resized to 224x224, following
standard practice. Second, considering the limited size of our dataset, we leverage
pre-trained vision encoders for feature extraction, which we apply out-of-the-box
(frozen weights). Following [44], we compare several models for feature extrac-
tion, all using a ViT-B/16 vision transformer [14] as image encoder but differing
in their training data and objective (implementation details in Appendix A.2):

– Sup-IN21K - a model trained with a standard supervised classification
objective on ImageNet-21K [12].

– DINO [8] - a general vision-only foundation model, trained in a self-supervised
manner on ImageNet-1K [41] using self-distillation.

– OpenCLIP [24] - open-source version of CLIP [37] trained on LAION-
400M [42] (crawled from random web pages). CLIP is a general multimodal
foundation model which learns joint representations of image-text pairs using
contrastive learning.
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– BioCLIP [44] - a multimodal foundational model for the biology domain,
trained with a species-classification CLIP objective on TreeOfLife-10M.

Lastly, we train a L2-regularized logistic regression classifier (linear probing)
to map the frozen features to class logits. We chose linear probing as it gave
consistently better results than a k-Nearest Neighbour (k-NN) classifier on this
dataset (see Appendix A.4for a comparison).
Ground truth - The classifier requires well-defined ground truth labels for
training and evaluation. However, the ground truth in our dataset is often am-
biguous due to disagreement amongst the six annotators leading to no clear-cut
and objective ground truth. Therefore, we compare several supervision schemes:

– Consensus: only training and evaluating on images with full agreement
between annotators, discarding the rest.

– Majority: using the entire dataset, with the majority label as ground truth.
– Expert: using the entire dataset, taking the annotations of Bio1, who has

the highest level of expertise, as ground truth.
– Noisy: using all the annotators’ labels during training instead of a single

label per image. That is, every training image is observed six times by the
classifier, each time with a potentially different label. Since there is no single
ground truth in this scheme, it is excluded from the quantitative evaluation.

Evaluation & Dataset splits - Considering the class imbalance, we evaluate
classification performance on unseen images in terms of class-wise and macro F1
score. We first evaluate stratified cross-validation performance with 20 random
folds (90% train, 10% test). We then consider 3 more challenging but realistic
dataset splits, where images from a specific date (Sep.26, Nov.7 and Nov.10) are
held out as a test set while the other dates are used as training. See Appendix A.3.

3.2 Quantitative Evaluation

We benchmark the classification models against individual human annotators
on the JAMBO dataset. The results are summarized in Fig. 8 at the class level
and Tab. 1 at the test set level. Note that in the consensus scenario, the anno-
tators have perfect performance by definition, as the subset of images has been
unanimously labelled by all the annotators. We also note that there is a large
variation in classification performance for the bad class due to the small number
of samples (only six images in the dataset with unanimous bad labels).

Looking at cross-validation performance, the classifiers excel at identifying
sand and stone images, even surpassing the performance of individual annotators
in the majority and expert settings. That is, learning to automate classification
from a single annotator can be more accurate than asking a second annotator to
manually perform the classification. Models perform the best when following the
consensus scheme, aside from the bad class (likely due to few bad samples). The
strong performance was expected, as ambiguous images are excluded from both
training and evaluation. Looking at Fig. 8, we see that class-wise performance
echoes the annotator agreement and class distribution analysis: sand images
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Fig. 8: Class-wise classiőcation performance in the cross-validation setting (top) and on
the 3 date-based test sets (bottom). Due to the small sample size, performance on date-
based test sets is shown as a scatter plot (one point per test set and model/annotator).

Table 1: 2-class macro F1-score (excluding the bad class) in % on different test sets.
For the cross-validation (CV) setting, we record the mean score across the 20 test sets.
Best score per test set is in bold, and scores greater than the annotators’ are underlined.

label scheme consensus majority expert

test sets CV Sep.26 Nov.07 Nov.10 CV Sep.26 Nov.07 Nov.10 CV Sep.26 Nov.07 Nov.10

Annotators 100 100 100 100 91.16 87.7 87.17 80.74 86.17 82.25 82.43 71.12

Sup-IN21K 99.03 98.74 99.75 60.82 92.25 85.79 75.54 73.81 96.69 94.49 87.25 71.90

DINO 99.46 99.61 92.75 71.05 93.51 85.75 78.24 66.63 95.90 74.09 73.08 67.56
OpenCLIP 99.64 99.31 90.81 50.92 92.31 81.83 65.70 68.68 94.64 90.18 67.57 67.71
BioCLIP 99.33 99.90 92.91 50.98 92.83 86.75 79.66 59.69 95.73 91.06 81.45 59.85

have the highest level of annotator agreement and the highest prevalence in the
dataset, and are also the easiest to classify. The performance gap between feature
extractors widens for the stone and bad class, which are rarer and more prone to
disagreement. When trained and evaluated on images from different dates, classi-
fication performance significantly drops compared to the cross-validation setting.
The Nov.10 test set is especially challenging due to the dark, cloudy and crowded
images, introducing a strong domain shift (cf. examples in Appendix A.3).

Comparing the four encoders, there is no clear “winner”. Although BioCLIP
is specifically for the biology domain and includes underwater images, it does not
bring consistent performance gains compared to the general-purpose encoders -
in fact, it performs the poorest under strong distribution shift (Nov.10 test set),
and on the bad class (Fig. 8). Sup-IN21K and DINO, both trained on ImageNet,
exhibit stronger overall performance on the date-based test sets than CLIP-based
models. Sup-IN21K gives the best performance under the expert scheme, while
DINO obtains the highest score when averaging across classes, test splits and
supervision schemes.
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3.3 Qualitative Evaluation

We take a closer look at specific predictions by classifiers trained on the JAMBO
dataset. Revisiting the examples from Fig. 6, we hold out these nine images as
a test set, and train linear classifiers on extracted features from the rest of the
images in the dataset. We obtain sixteen different trained models (four different
feature extractors, four supervision schemes) whose predictions on the test set
are visualized in Fig. 9. Annotator labels are also shown for reference.

It is interesting to note that although predictions vary across models and
supervision schemes, they are rarely unreasonable or unacceptable when com-
pared to the annotators. BioCLIP is the only variant whose predictions does
not always match with at least one of the manual annotators: in (C), BioCLIP

A

CV3CV2CV1Bio3Bio2Bio1Manual

BCLIPOCLIPDINOIKNoisy

BCLIPOCLIPDINOIKExpert

BCLIPOCLIPDINOIKMajority

BCLIPOCLIPDINOIKConsensus

B

CV3CV2CV1Bio3Bio2Bio1Manual

BCLIPOCLIPDINOIKNoisy

BCLIPOCLIPDINOIKExpert

BCLIPOCLIPDINOIKMajority

BCLIPOCLIPDINOIKConsensus

C

CV3CV2CV1Bio3Bio2Bio1Manual

BCLIPOCLIPDINOIKNoisy

BCLIPOCLIPDINOIKExpert

BCLIPOCLIPDINOIKMajority

BCLIPOCLIPDINOIKConsensus

(a) Full agreement (100%).

D

CV3CV2CV1Bio3Bio2Bio1Manual

BCLIPOCLIPDINOIKNoisy

BCLIPOCLIPDINOIKExpert

BCLIPOCLIPDINOIKMajority

BCLIPOCLIPDINOIKConsensus

E

CV3CV2CV1Bio3Bio2Bio1Manual

BCLIPOCLIPDINOIKNoisy

BCLIPOCLIPDINOIKExpert

BCLIPOCLIPDINOIKMajority

BCLIPOCLIPDINOIKConsensus

F

CV3CV2CV1Bio3Bio2Bio1Manual

BCLIPOCLIPDINOIKNoisy

BCLIPOCLIPDINOIKExpert

BCLIPOCLIPDINOIKMajority

BCLIPOCLIPDINOIKConsensus

(b) Medium agreement (≥ 50%).

G

CV3CV2CV1Bio3Bio2Bio1Manual

BCLIPOCLIPDINOIKNoisy

BCLIPOCLIPDINOIKExpert

BCLIPOCLIPDINOIKMajority

BCLIPOCLIPDINOIKConsensus

H

CV3CV2CV1Bio3Bio2Bio1Manual

BCLIPOCLIPDINOIKNoisy

BCLIPOCLIPDINOIKExpert

BCLIPOCLIPDINOIKMajority

BCLIPOCLIPDINOIKConsensus

I

CV3CV2CV1Bio3Bio2Bio1Manual

BCLIPOCLIPDINOIKNoisy

BCLIPOCLIPDINOIKExpert

BCLIPOCLIPDINOIKMajority

BCLIPOCLIPDINOIKConsensus

(c) Low agreement (< 50%).

Fig. 9: Predictions on images from Fig. 6 by the four models trained on the rest of
the dataset with 2 different supervision schemes (noisy labels vs. majority labels).
Model names are abbreviated due to space constraints. The green, blue, and red colors
represent sand, stone, and bad, respectively.
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models predict sand, while all annotators agree that the image is bad due to
poor visibility of the seafloor. As the agreement between annotators decreases,
so does the agreement between the sixteen models.

Looking at specific supervision schemes, the noisy label scheme seems to
smooth out differences between feature extractors, giving identical predictions
across DINO and CLIP-based models. We also observe that under expert super-
vision, the models’ predictions are not necessarily consistent with the manual
labels of Bio1, despite being trained with the labels of this annotator. This
warrants investigating the extent to which features from different pre-trained
encoders are able to capture not only the presence of certain objects/cues (e.g.
a stone or sand ridge) but also their percentage cover in the image.

4 Discussion

Through our analysis of multi-annotator labels, we identified two key factors
contributing to disagreement between annotators: ambiguity in the images and
ambiguity in the interpretation of the image content related to the habitat defi-
nitions. On one hand, the seabed is not always clearly or fully visible. Currents
or movement of the camera may cause motion blur, and turbidity caused by
re-suspended particles and organic matter in the water degrades image clarity
by scattering the light. Attenuation of the natural light or uneven illumination
from artificial lights can obscure details and distort colors. These issues are all
amplified as the distance between the camera and seabed increases. On the other
hand, even when images are clear, we saw that annotators interpreted the con-
tent differently with respect to the sand, stone, and bad categories, leading to
conflicting annotations. This was especially true for images featuring both sand
and stones (is it stone enough?), or images with poor visibility containing salient
features indicating the habitat type (is it bad enough?). Special cases such as
abandoned fishing gear or muddy habitats were also not explicitly included in
our label definition, which may have introduced additional doubt.

While the quality of seabed images captured in turbid waters is difficult to
improve, ways to reduce some of the disagreement between annotators could
be explored. First, labelling instructions could be defined more comprehensively
manner and covers unforeseen scenarios, e.g., by including an other class to han-
dle special cases. Second, the labelling interface could provide additional visual
cues to annotators, e.g., by displaying the image in multiple resolutions/scales
to make high or low frequency features more apparent, or including adjacent
frames in the form of a short video clip to provide contextual information. Other
and more informative annotation schemes could also be considered. For example,
regression-based annotation where the stone or sand coverage is recorded from
0% to 100%, or a more detailed procedure where objects of interest, such as
stones, flora, and fauna, are individually segmented at the instance level. Alter-
natively, an unstructured labelling scheme could be followed, where annotators
provide a free-form text description rather than a single pre-defined category per
image. Improved annotation schemes may facilitate more precise evaluations of
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stone and sand reef coverage and size, which is relevant for assessing the con-
dition of the reefs. For instance, the structural complexity of stone reefs offers
insights into their role as nurseries, shelters, and foraging sites, aspects that may
be overlooked when conducting simple image classification. However, the manual
labelling process becomes costlier with the inclusion of additional information,
and the automated analysis pipeline grows more complex.

The models we have evaluated for automating benthic habitat image classifi-
cation are simple, since they only require training a linear classifier, and achieve
promising baseline results. However, the JAMBO dataset opens interesting chal-
lenges for future work due to heavy class imbalance, distribution shift, and lack
of a single objective ground truth. Class imbalance occurs naturally due to the
prevalence of sand habitats in the region and the rarity of bad images in cu-
rated video clips. Limited generalization to images from unfamiliar locations
is also a well-known problem when deploying computer vision systems in the
wild [3, 27], which is amplified in the underwater domain due to the cost and
scarcity of training data. Observer bias and disagreement, while well-studied in
biology [9,22,34,36], is often overlooked in computer vision datasets. An interest-
ing direction is to consider the uncertainty inherent in this dataset as something
that is valuable to model [23, 33] and evaluate [2]. This could, for example, be
achieved by encoding label uncertainty with soft labels [20] or formulating habi-
tat classification as a multiple hypothesis prediction task [40], where the model
can produce multiple plausible interpretations for a single image.

Lastly, while this work focuses on habitat classification from seabed images,
an equally relevant task to automate is the curation of raw underwater videos,
as only a small fraction of recorded frames actually capture the seabed. Manu-
ally sifting through this largely uneventful footage to identify relevant segments
is laborious and time-consuming, hindering the adoption of computer vision-
based classification. Future research could explore techniques such as keyframe
extraction or novelty detection to identify relevant images automatically.

5 Conclusion

We have presented JAMBO, the first publicly available and multi-annotator
benthic habitat classification image dataset from the Greater North Sea. This
is a valuable resource for researchers and practitioners in the cross-disciplinary
fields of seabed mapping and underwater vision. Through detailed analysis, we
have not only provided insights into the appearance of benthic habitats in this
important area, but also into the uncertainties arising when annotating images
of the seabed. Lastly, we have explored the potential of pre-trained vision models
for classifying seabed images. These provide a solid baseline without needing to
train or fine-tune a feature extractor. However, automatic benthic habitat clas-
sification under distribution shift and label ambiguity remains an open problem.
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