
A Appendix

This appendix contains supporting figures and implementation details for repro-
ducibility.

A.1 Data collection set-up

Fig. 1 shows the ROV used to collect the JAMBO dataset, and Fig. 2 shows a
screenshot of the labelling interface used by all annotators. The ROV’s GoPro
was configured to record with a frame rate of 60 FPS, a resolution of 3840x2160
pixels, and using the linear digital lens setting with a field of view of 92◦, 61◦,
and 100◦ in the horizontal, vertical, and diagonal direction, respectively.

Fig. 1: The underwater ROV captured from two different angles. The position and
orientation of the camera and light sources are highlighted by green and red markings,
respectively. The yellow arrows indicate the forward orientation of the drone.

Fig. 2: Screenshot of the labelling interface.
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A.2 Classification pipeline

Before being fed to a pre-trained feature extractor, images are resized to a res-
olution of 224 × 224 using bilinear interpolation. The baseline models in our
experiments were implemented as follows:

– The Sup-IN21K and DINO models are taken from the HuggingFace library [3]
(model cards google/vit-base-patch16-224-in21k and facebook/dino-vitb16
respectively).

– The OpenCLIP and BioCLIP models are taken from the OpenCLIP library
(open_clip.create_model_and_transforms(’ViT-B-16’, pretrained=’laion400m_e32’) and
open_clip.create_model_and_transforms(’hf-hub:imageomics/bioclip’) respectively).

– For all four pre-trained backbones, a 1-dimensional feature vector of size 768
is extracted by taking the pooling output (we do not apply the projection
layer in the CLIP models).

– The logistic regression classifier is trained using sklearn’s L-BFGS imple-
mentation [1] with cross-entropy loss as training objective, and a maximum
of 1000 iterations (similarly to [2]). Samples are inversely weighted based
on class frequency to account for the heavy class imbalance in our dataset.
The inverse regularization parameter C is kept to its default value of 1.0 (cf.
Appendix A.4).

– As an alternative to logistic regression, the k-Nearest Neighbour classifier
is trained using sklearn’s implementation [1] based on Euclidean distance.
Features are zero-centered based on training data statistics and normalized
before being fed to the classifier. The parameter K is kept to its default
value of 5 (cf. Appendix A.4).

A.3 Dataset splits

Here we describe the train/test splits used in the 2 benthic habitat classification
experiments. Cross-validation is less challenging, since the test set can contain
images taken at a very similar location to images in the training set. The date-
based splits are designed to evaluate generalization to new locations.

Cross-validation - We apply random stratified cross-validation as imple-
mented by sklearn [1] via the StratifiedShuffleSplit method, with 20 splits
and a test size of 10%. That is, 20 different train/test splits are created randomly
with 90% of images in the train set and 10% in the test set, while also preserv-
ing the original class distribution in each set. Using randomized cross-validation
rather than K-fold cross-validation ensures that the minority bad class has at
least one example per train and test test, despite there only being six images
unanimously labelled as bad in the whole dataset. This means that some test
examples are repeated across different splits.

Date-based test splits - As illustrated in Figure 1 (main text), videos
were collected on 4 different days, covering a different area each day. To evaluate
model generalization, we create three train/test splits by holding out data from
a specific day (cf. Tab. 1). Images from the 8/11 is kept as training data in all
three splits due to the large number of images collected on that day. Examples
from each day are shown in Fig. 3.
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Table 1: Number of dataset images for each data collection day, and the three dataset
splits used to evaluate generalization.

date 26/9/23 7/11/23 8/11/23 10/11/23 total

num. images 710 289 2189 102 3290

split Sep.26 test train train train
split Nov.07 train test train train
split Nov.10 train train train test

(a) 26/9/23 (b) 7/11/23

(c) 8/11/23 (d) 10/11/23

Fig. 3: 100 randomly selected dataset images from each data collection day, after being
resized to 224x224.
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A.4 Classifier hyper-parameters

Here we zoom in to the choice of classifier hyperparameters: C in the logistic re-
gression classifier determines the inverse of the regularization strength (stronger
regularization as C decreases), and K in the KNN classifier determines the num-
ber of neighbours used for majority voting (larger K leads to smoother decision
boundary). We sweep 6 values of C and K and record classification performance
on the cross-validation splits in Fig. 4 and the date-based splits in Fig. 5.
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Fig. 4: Effect of the classifier’s hyperparameter values on test set classification perfor-
mance across the 20 cross-validation splits and across the 3 supervision schemes
(20× 3 = 60 points per boxplot).
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Fig. 5: Effect of the classifier’s hyperparameter values on test set classification per-
formance across the 3 date-based test splits and across the 3 supervision schemes
(3× 3 = 9 points per boxplot).
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