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Abstract. Estimating global tree canopy height is crucial for forest
conservation and climate change applications. However, capturing high-
resolution ground truth canopy height using LiDAR is expensive and
not available globally. An efficient alternative is to train a canopy height
estimator to operate on single-view remotely sensed imagery. The pri-
mary obstacle to this approach is that these methods require significant
training data to generalize well globally and across uncommon edge cases.
Recent monocular depth estimation foundation models have show strong
zero-shot performance even for complex scenes. In this paper we lever-
age the representations learned by these models to transfer to the remote
sensing domain for measuring canopy height. Our findings suggest that
our proposed Depth Any Canopy, the result of fine-tuning the Depth
Anything v2 model for canopy height estimation, provides a performant
and efficient solution, surpassing the current state-of-the-art with su-
perior or comparable performance using only a fraction of the compu-
tational resources and parameters. Furthermore, our approach requires
less than $1.30 in compute and results in an estimated carbon footprint
of 0.14 kgCO2. Code, experimental results, and model checkpoints are
openly available at github.com/DarthReca/depth-any-canopy.

Keywords: Canopy Height Maps · Remote Sensing · Monocular Depth
Estimation

1 Introduction

Measuring tree canopy extent and height accurately is crucial to tracking the
health of our world’s ecosystem [36]. However, manual in-situ measurements or
airborne laser scans (ALS) using LiDAR [1, 9] are expensive and slow, mak-
ing them unscalable for acquiring global measurements [33]. Furthermore, each
acquisition method comes with their own sensitivities and errors [29]. Conse-
quently, there is a growing need for more accessible and cost-effective approaches
to canopy height estimation.
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Fig. 1: From Depth Anything [39] to Depth Any Canopy. Depth Anything is
a monocular depth estimation foundation model trained on natural imagery. We fine-
tune and adapt Depth Anything v2 for the task of estimating tree canopy height in
remote sensing imagery, resulting in Depth Any Canopy (DAC).

Remotely sensed satellite data is currently in abundance and an efficient
alternative; however, satellite sensors built for measuring canopy height, such as
GEDI [6], provide measurements which lack high spatial resolution. With this
said, the most reasonable automated solution is to utilize machine learning to
extract canopy height learned from satellite imagery geospatially aligned with
ALS-derived canopy height maps [8].

One promising alternative is to develop a canopy height estimator that uses
single-view remotely sensed image. However, this approach faces the substantial
challenge of requiring extensive training data to achieve generalization across
diverse global environments. Foundation models have displayed the importance
of large-scale pretraining, which allows for the high-quality pretrained weights
to be fine-tuned in a low-cost manner for various downstream tasks [4, 42].

The task of canopy height estimation from remote sensing imagery can be
posed similarly to the depth estimation task, where the camera view is always
fixed overhead and we seek to measure distance above ground, with ground
represented as zero. Monocular depth estimation for natural imagery has recently
experienced significant zero-shot performance improvements by pretraining on
complex synthetic data and then pseudo-labeling a large-scale dataset for further
semi-supervised training [38]. These models have shown the capability of being
adapted for various applications, suggesting the opportunity for cross-domain
transfer learning.
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In this work, we explore the adaption of depth foundation models to remote
sensing domain, specifically for tree canopy height estimation, without requiring
significant amount of pretraining on remote sensing imagery. We propose lever-
aging Depth Anything v2 [39], a state-of-the-art monocular depth estimation
model, to enhance the accuracy and efficiency of canopy height estimation from
aerial imagery.

Our findings indicate that a proper finetuning of the model not only surpasses
the current state-of-the-art performance but does so with fewer computational
resources. Using this new model, Depth Any Canopy (DAC), we aim to provide
a scalable and efficient solution for global canopy height estimation, making a
step forward in providing high-quality canopy height data more accessible and
contributing to better forest management and climate change mitigation efforts.

Our contributions can be summarized as follows:

1. We adapt monocular depth estimation foundation models, Depth Anything
v2, fine-tuning them for canopy height estimation derived from remote sens-
ing imagery, resulting in Depth Any Canopy (DAC).

2. We achieve superior or comparable results to a larger baseline with significant
advantages of being pretrained on millions of in-domain satellite imagery.

3. Our resulting fine-tuning process and models are efficient and low-cost. They
can be reproducible using minimal consumer GPU hardware.

The rest of the article is structured as follows. Section 2 discusses the related
works in canopy height estimation and foundational models in computer vision
and remote sensing. Section 3 describe the datasets employed in the study. Sec-
tion 4 presents the models, the metrics, and adopted preprocessing. Section 5
presents the experimental results from both quantitative and qualitative per-
spectives. Section 6 draws the conclusion and presents future works.

2 Related Works

In this section, we discuss the related works in canopy height estimation and
monocular depth estimation.

2.1 Canopy Height Estimation

Various techniques have been employed to estimate canopy height, ranging from
traditional field measurements [40] to advanced remote sensing technologies [31].
One common tool is Light Detection and Ranging (LiDAR) due to its high spa-
tial resolution and accuracy, allowing for detailed 3D representations of forest
canopies [31]. The integration of LiDAR data with optical imagery and the ap-
plication of machine learning algorithms have further enhanced canopy height
estimation, thanks to the ability to deal with complex and heterogeneous envi-
ronments [35]. The usage of LiDAR technologies is more expensive than RGB
cameras, and generating canopy height maps (CHM) using deep learning mod-
els trained on remotely sensed satellite or aerial imagery has become popular
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as methods have been able to provide accurate and higher-resolution CHM esti-
mates. Lang et al. [16] trained a model to produce a low-resolution 10m global
canopy height map by fusing GEDI and Sentinel-2 satellite imagery. Becker et
al. [2] similarly created a low-resolution map by using Bayesian deep learning to
estimate canopy height in fused Sentinel-1 SAR and Sentinel-2 optical imagery.
Pauls et al. [23] improved upon these works by creating a novel shift resilient
loss to adjust their ground truth for the intricacies of the GEDI global height
product. Fogal et al. [7] created a 1.5m resolution multitemporal dataset using
aligned SPOT satellite imagery and ALS acquisitions in France. Tolan et al. [32]
took a self-supervised learning approach by pretraining a Vision Transformer
(ViT) [5] using the DINOv2 [22] method on 18 million crops of globally sam-
pled high-resolution WorldView satellite imagery. The authors then fine-tune
this model to estimate canopy height using a dataset of U.S. based imagery and
1m resolution ALS-derived CHMs from the NEON catalog. While this approach
works in practice, a significant amount of compute and efforts to collect these
datasets are required.

Core Aquatic
Core Terrestrial
Gradient Aquatic
Gradient Terrestrial

Fig. 2: National Ecological Observatory Network sites across the US. Aquatic
sites collect information about aquatic ecosystems, while terrestrial ones collect data
about terrestrial ecosystems. Core sites provide long-term support, while Gradient sites
are temporary sites to study the ecological response to specific changes.

2.2 Foundation models in Computer Vision and Remote Sensing

Foundation models are becoming one of the prevalent solutions in many fields
when there is no sufficient training time or large data availability [42], which
is particularly relevant for transformers. In the computer vision field, ViT [5],
and subsequent CLIP [24] and DINOv2 [22] have become well-established and
robust encoders employed in many architectures and downstream tasks. Models
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like Segment Anything [13] and OWL-ViT [21] make use of these advancements
for general-purpose usage. In the remote sensing field, following these advance-
ments, many solutions were proposed providing generative models [12], multi-
modal models [14], or task-specific solutions [19,41]. With this said, foundation
models remain unexplored for the task of canopy height estimation.

2.3 Monocular Depth Estimation

Monocular depth estimation for natural imagery, being a more mainstream area
of computer vision research, experiences faster improvements than remote sens-
ing height estimation topics. The MiDaS/DPT family of models [3, 17, 25] has
shown that training for relative depth on a mixture of datasets, instead of train-
ing on small individual metric depth datasets such as NYU Depth V2 [30],
ETH3D [28], and DIODE [34], experiences better transfer learning performance.
MegaDepth [18] and Depth Anything [38, 39] have found that pretraining for
relative depth estimation on higher quality and large-scale synthetic and pseudo-
labeled images further improves zero-shot generalization performance.

Furthermore, Marigold [11] displayed the efficiency of requiring a single con-
sumer NVIDIA RTX 4090 GPU for fine-tuning image generation diffusion mod-
els pretrained on large-scale datasets for the task of depth estimation. These
advancements in natural imagery provide an interesting and promising alterna-
tive to the full training of models for canopy height estimation, and thanks to
the pre-training, they provide solid baselines for predicting relative distances.

3 Datasets

In this section, we describe the data sources and the datasets employed for the
analysis.

3.1 Data Sources

The primary data source for high-resolution CHM is derived from the National
Ecological Observatory Network (NEON) catalog [10]. The network is composed
of many sites across the U.S., as shown in Figure 2. Terrestrial sites collect data
to monitor changes in climate, surface-atmosphere interactions, biogeochemical
processes, organismal populations, and habitat structure over the land, while
aquatic sites collect data to monitor changes in freshwater and biogeochemi-
cal processes, organismal populations, and habitat structure in water sources.
Core sites provide long-term support, while Gradient sites are temporary sites
to study the ecological response to specific changes. In our specific case, the data
consists of high-resolution, multi-spectral, and hyperspectral aerial imagery cap-
tured from aircraft over various ecological sites. Multi-spectral imagery captures
data in several specific wavelengths, typically including visible and near-infrared
bands. Hyperspectral imagery captures data in hundreds of contiguous spectral
bands. This imagery provides detailed spatial data on vegetation, land cover,
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Fig. 3: ALS-derived tree canopy height acquisition process. LiDAR sensors
attached to a fixed-wing aircraft, emits a laser pulse that reflects many times until
reaching the ground. The canopy height is computed using the time-delta between the
first and the last return of the pulse, the pulse obtained when reaching the ground
level.

and water bodies, aiding in vegetation health assessment, species distribution,
and biomass monitoring.

LiDAR sensors use laser light to measure distances to the Earth’s surface and
various objects from aircraft or drones. These sensors emit thousands of laser
pulses per second toward the ground, capable of penetrating vegetation. These
pulses hit various surfaces, such as the canopy, branches, and the ground, reflect-
ing back to the sensor and providing punctual information. Points representing
the highest surfaces in the forest canopy are used to create a Digital Surface
Model (DSM), including the canopy’s top. The Canopy Height Model (CHM) is
derived by subtracting the Digital Terrain Model (DTM), which represents the
bare earth surface, from the DSM. This provides the height of the canopy above
the ground surface [26] as shown in Figure 3.

3.2 EarthView dataset

The Satellogic EarthView Dataset [27] is a comprehensive collection of multispec-
tral earth imagery for general-purpose tasks. The dataset is divided into four dis-
tinct subsets sourced from Satellogic, Sentinel-1, Sentinel-2 satellites and aerial
imagery and ALS-derived CHMs from the NEON catalog. While the dataset pro-
vides satellite imagery provided by one commercial satellite (Satellogic) and two
publicly available European Space Agency missions (Sentinel-1 and Sentinel-2),
we employed only the aerial imagery, which is the only one with canopy height
maps by LiDAR sensor, and it is the common imagery type between the two
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Fig. 4: Example quality scores by Q-Align [37] on NEON RGB images from
the EarthView dataset. On the left, a noisy sample scored 1.10 ; in the middle, a
medium-quality sample scored 2.53 ; and on the right, a better-quality sample scored
3.71. This solution permits the detection and filtering of low-quality samples affected
by warping and motion blurs.

analyzed datasets. The NEON subset is composed of very high-resolution RGB
images at 0.1m paired with 1m CHMs.

3.3 High Resolution Canopy Height Maps dataset

The High-Resolution Canopy Height Maps (HRCHM) [32] is a collection of ap-
proximately 5,800 NEON CHMs with an area of 1 km × 1 km and a resolution of
1 meter per pixel. Samples were selected based on quality, minimal artifacts, and
temporal proximity to a collection of Maxar satellite imagery. The CHMs were
reprojected and resampled to match the Maxar imagery resolution and paired
with a corresponding RGB satellite images to train a canopy height estimation
model. The dataset was split into a train and test set, referred to as the NEON
test set, and preprocessed into 256 × 256 random crops.

4 Methodology

This section outlines the model, preprocessing, and metrics used in the analysis.

4.1 Problem Statement

Let I be an arbitrary RGB image of size W ×H × 3, where W and H are the
width and height of the image in pixels, respectively, and the channel depth of
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Fig. 5: Depth Anything v2 training procedure. Synthetic images and relative
labels are used to train a large teacher model. It is employed to annotate real images
to create pseudo-labels. The real images and relative pseudo-labels are used to train a
small student model.

the image is 3, corresponding to the red, green, and blue color channels. The
objective is to estimate the canopy height map M from this image. M can be
represented by a matrix of size W ×H, where each element Mi,j represents the
estimated height of the canopy for the corresponding pixel Ii,j in the image I.

4.2 Preprocessing

The NEON imagery in the EarthView dataset contains a significant number of
samples with motion blur or warping due to image stitching errors. We find
that these samples significantly degrade fine-tuning performance and are likely
unuseful for evaluation. Therefore, we seek to filter these samples by employing
the Q-Align [37] image quality assessment vision-language model to score the
quality of each sample between a range of [0 − 5] where higher values indicate
better quality as shown in Figure 4. We then filter low-quality samples using a
score threshold of t = 2.5 (which indicates above-average quality). The training
set contains 45781 samples, validation set 5788, and test set 5682. Every sample
contains at least one pixel with the canopy height different from zero. According
to KS-test the distribution of heights is similar between train-val (p ≈ 0.68) and
train-test (p ≈ 0.75)

4.3 Depth Anything for Canopy Height Estimation

In our study, we used Depth Anything v2 in both zero-shot and with a finetuning
on EarthView dataset, called Depth Any Canopy, for addressing the canopy
height estimation.

Depth Anything [38] is a state-of-the-art monocular depth estimation model.
It features a DINOv2 pretrained ViT encoder [22] and DPT decoder [25]. The
model is trained using an online student-teacher distillation with a combination
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Fig. 6: Tree Canopy Extent evaluation process. We threshold the ground truth
and predicted canopy heights to obtain binary masks. We utilize this to evaluate a
model’s effectiveness in identifying tree extent.

of real depth maps and pseudo-labeled depth maps of 62 million imagery. It
excels in zero-shot generalization and improves performance when fine-tuned for
metric depth on evaluation benchmark datasets.

The successor, Depth Anything v2 [39], takes a different approach and only
pretrains on high-quality synthetic image and depth map pairs due to invalid
pixels and low complexity of scenes in canonical metric depth datasets. It then
uses the synthetic pretrained model to generate precise pseudo-labels of 62+
million real images in an offline manner. A student model is then trained on
these pseudo-labels as shown in Figure 5. The model uses scale-and-shift invari-
ant losses to ensure consistency and gradient matching loss for sharper depth
predictions [25]. This model not only outperforms previous state-of-the-art mod-
els in accuracy, but also speed, and efficiency primarily due to the large-scale
and high-quality pretraining dataset.

4.4 Baseline

As described in Section 2, Tolan et al. [32] proposed to pretrain a model using
the DINOv2 on a large-scale dataset of 18 million 256 × 256 RGB crops from
global Maxar WorldView satellite imagery. This model was then fine-tuned on
the HRCHM dataset described in Section 3.3.
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Table 1: Results on EarthView and HRCHM datasets. The best for each metric
is bolded, while the second-best is underlined. FT indicates if the model is finetuned
on EarthView. DA and DAC refers to Depth Anything v2 and Depth Any Canopy,
while DAC-S and DAC-B refers to the ViT-S and ViT-B variants, respectively.

Model FT # Params GFLOPs EarthView [27] HRCHM [32]

MAE ↓ IoU ↑ PC ↑ MAE ↓ IoU ↑ PC ↑

SSL-H [32] ✗ 677M 414 0.2236 0.4164 0.1544 0.0306 0.485 0.7441
DA-S [39] ✗ 24.8M 115 0.4116 0.4164 0.2892 0.5960 0.6474 0.1791
DA-B [39] ✗ 97.5M 381 0.4607 0.4164 0.361 0.5972 0.6474 0.1692

DAC-S [39] ✓ 24.8M 115 0.1410 0.5323 0.2740 0.1025 0.5672 0.6102
DAC-B [39] ✓ 97.5M 381 0.1304 0.5926 0.3483 0.1203 0.5494 0.6171

4.5 Metrics

In our experimentation, we analyze the predicted performance on the canopy
height estimation regression task using the Mean Absolute Error (MAE) (L1
distance). Furthermore, we evaluate the ability of the model to segment the tree
canopy from the background by using the same process by Tolan et al. [32] to
mask the predicted and ground truth CHM using a threshold of t = 1E − 4
(to include also very small trees which were excluded by the previous work) as
shown in Figure 6. We then compute binary segmentation performance using
the Intersection-Over-Union (IoU) metric to understand the quality of the pre-
dictions of areas considered as trees, tree canopy extent. Lastly we compute the
Pearson Correlation (PC) of prediction and ground truth in the tree areas to
understand whether relative heights are consistent despite the errors. To com-
pare model size and efficiency, we report the floating-point operations per second
(FLOPs) in billions (giga) and the number of parameters in millions.

5 Experimental Results

In this section, we present the experimental settings and an analysis of the
results.

5.1 Experimental Settings

The models were finetuned with the AdamW optimizer [20] for 3 epochs (until
plateau) with a batch size of 8 on the EarthView training set using an NVIDIA
RTX A6000 48GB GPU. We employed a learning rate scheduler with a warmup
of 5% of the training steps with linear decay. The maximum learning rate is
set to α = 5E − 6. We utilize the Mean Squared Error (L2 distance) between
the ground truth and predicted canopy height as a loss function. The canopy
height maps are min-max normalized (at dataset level) to relative height since
EarthView does not provide height in meters, only a relative distance.
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We evaluate and fine-tune the Depth Anything v2 ViT-S and ViT-B check-
points, referred to as DA-S and DA-B, respectively into Depth Any Canopy
(DAC-S) and (DAC-B). We do not utilize the best performing ViT-G (Giant)
weights because they have not been released. We baseline against the ViT-H
(Huge) checkpoint from Tolan et al. [32], referred to as SSL-H, trained using
the process described in Section 4.4. We utilize this checkpoint because no other
smaller ViT variants of this model were made available.

We note that the SSL-H baseline is comparatively larger than the Depth Any-
thing v2 checkpoints we initialize from. Furthermore, SSL-H is already pretrained
in-domain on 18 million remote sensing images and fine-tuned on a large set of
NEON aerial RGB imagery for canopy height estimation. Therefore, the Depth
Anything v2 weights should be at a significant disadvantage when comparing to
this baseline.

5.2 Discussion

Overall Results We tested the SSL-Huge (SSL-H) [32] on both datasets (Earth-
View and HRCHM) to understand the performance and generalization capa-
bilities. Depth-Anything (DA) was tested on both datasets in zero-shot and
after finetuning on EarthView. This approach provides a comparison of both in-
domain and out-of-domain data to understand the capability of generalization.

In Table 1, we reported the results obtained by each tested model. The fine-
tuning of Depth Anything v2 on EarthView provides good comparative results
and consistent performance under both MAE and IoU metrics, while the PC is
generally higher on HRCHM for SSL-H.

SSL-H proves to be best in terms of MAE and PC on HRCHM, while the IoU
is lower than the one achieved by DA. The performance is worse on EarthView,
particularly on MAE, which decreases by 10 times with respect to the perfor-
mance on HRCHM. Additionally, we can reach good performance with smaller
models.

Zero-shot Comparison When comparing Depth Anything v2 in zero-shot to
Depth Any Canopy, we can conclude it is necessary to adapt the model to this
new unseen task to be an effective solution. For example, shows a reduction
in MAE from 0.4116 to 0.1410 on EarthView and from 0.5960 to 0.1025 on
HRCHM after fine-tuning DA-S to DAC-S. However, the main advantages in
terms of resource efficiency are maintained by providing good results in fewer
GFLOPs. In many cases, DAC-S provides the best or second-best performance
in around 1/4 of the GFLOPs and 1/27 of the parameters of SSL-H [32]. DAC-S
achieves results comparable to DAC-B, indicating it is a preferable solution for
the task due to its low resource demands.

Carbon Footprint Analysis As mentioned in Section 5.1, to achieve similar or
comparable results to SSL-H by Tolan et al. [32], our DAC fine-tuning requires
simply 3 epochs on the EarthView dataset using an NVIDIA RTX A6000 GPU.
This requires 1.5 and 2.61 hours at an estimated cost of $1.24 and $2.09 using the
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Fig. 7: Example predictions of Depth Any Canopy (DAC-S) and SSL-Huge
model from Tolan et al. [32] on NEON imagery from the EarthView and HRCHM
datasets. Left to right: NEON RGB Image, Ground Truth Canopy Height Map, DAC-S
predicted CHM and SSL-H predicted CHM.

Lambda Labs hourly pricing for the DAC-S and DAC-B variants, respectively.
We calculate that our fine-tuning results in an estimated 0.14 and 0.24 kg of
CO2 emissions of using the ML CO2 Impact calculator [15]. We believe this to
be preferable to the 8kg of CO2 emissions reported by our SSL-H baseline for
fine-tuning, not considering the 1.8T of CO2 emissions for pretraining.

Qualitative Results Figure 7 provides a qualitative example of predictions by
DAC-S and SSL-H on both datasets. On EarthView, SSL-H does not recognize
many trees as expected, while DAC-S provides better performance. On HRCHM,
we can note that SSL-H underestimates or overestimates some areas, although
providing good IoU performance. The variations captured by DAC are generally
superior to the ones captured by SSL-H.

https://lambdalabs.com/service/gpu-cloud#pricing
https://mlco2.github.io/impact#compute
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Image Mask Depth Anything V2 SSL

(a) Example 1
Image Mask Depth Anything V2 SSL

(b) Example 2

Fig. 8: Examples of limitations of SSL-H addressed by Depth Any Canopy.
Through our analysis, we find that the SSL-H model by Tolan et al. [32] tends to gen-
erate overly smooth predictions or predicts zero height for smaller vegetation. Because
Depth Any Canopy is fine-tuned from the Depth Anything v2 weights it is able to
recover vegetation heights for complex scenes and edge cases.

Figure 8 provides an overview of other cases. SSL-H avoids prediction on low
trees, as in this qualitative example, while DAC-S tries to provide a height map
of the area with a good level of detail. This shows the robustness achieved by
Depth Any Canopy. The model can deal with complex scenarios, providing a
high level of detail for complex scenes.

6 Conclusion

In this work, we have presented a novel approach to canopy height estimation
by leveraging Depth Anything v2, a state-of-the-art monocular depth estima-
tion foundation model. Our proposed model, Depth Any Canopy, demonstrates
superior or comparable performance to current state-of-the-art methods with
fewer computational resources. This is crucial for a scalable and cost-effective
global canopy height estimation solution. Our findings show the potential of
depth estimation foundation models pre-trained on large-scale natural imagery.
They can be adapted for specific tasks in the remote sensing domain with mini-
mal additional training. By fine-tuning Depth Anything v2, we have shown that
it is possible to achieve high-quality canopy height maps from single-view im-
ages, overcoming the limitations of expensive pre-training on large-scale satellite
imagery datasets to achieve comparable performance. In future works, we plan
to expand the evaluation to a wider variety of forest biomes and geographical
regions to account for more diverse environments and to investigate the usage of
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hyperspectral and radiometric imagery, which could enhance the understanding
of the area with complex features.
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