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Abstract. Butterflies are easily recognizable due to their showy col-
oration, and are a familiar taxon to many enthusiasts. Because of the
abundance of specimens collected and the ease of comparison among var-
ious species, regional variation in butterfly spots can be observed, which
is related to multiple factors such as geological history, topography, cli-
mate, and hostplants. In this study, we focus on the relationship between
regional variation in butterfly spots and the distribution of larval host-
plants and aim to clarify the relationship by classifying the larval host-
plants based on images of butterfly spots. Specifically, we focus on the
Luehdorfia japonica, a species of butterfly with known geographic varia-
tion in butterfly spots and a highly understood distribution. We create
Luehdorfia japonica image dataset based on digital specimens and the
metadata about the collection site. We show that the multi-label atten-
tion branch network can be trained on the dataset to accurately classify
the larval hostplant from the specimen images and that the analysis of
the attention map provides the same basis for decision making as the
expert knowledge.

Keywords: Attention branch network · Multi-label image classification
· Visual explanation · Luehdorfia japonica · Regional variation

1 Introduction

Butterflies are highly visible and one of the most familiar species. Because of
the abundance of specimens collected, the distribution of their habitat is highly
well understood [11]. And, because of the ease of comparison among specimens,
many species are known to show regional variation (geographic variation) in their
spots. Moreover, due to the high degree of distribution elucidation, it is easy to
identify regional extinctions and the timing of extinctions and declines. Since
various factors such as geographical history, topography, environment, and larval
hostplants, plants eaten during the larval stage, are considered to be related to
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Fig. 1: Overview of the relationship between wing spots and the distribution
of the Asarum. (a) Schematic illustration of populations based on regional variation
in wing shape and spots. The blacker the population, the more developed the black
bands of the spots. (b) Conceptual map of the distribution of the Asarum used by the
Luehdorfia japonica. Modified from reference [33], respectively.

regional variation, we expect to elucidate various problems and factors related
to butterflies by correlating butterfly specimen data with various data.

Among various species of butterflies, in this study, we focus on Luehdorfia
japonica, whose distribution is highly known due to its popularity among but-
terfly lovers. The wing spots of Luehdorfia japonica are well known to vary from
region to region. As shown in Figure 1, Luehdorfia japonica is thought to corre-
spond to its regional variation in the distribution of Asarum [11,24], which is a
larval hostplant and has significant speciation.

In this paper, we aim to clarify the relationship between the regional variation
of the butterfly spots and their larval hostplants, based on images of Luehdor-
fia japonica specimens and information on the distribution of Asarum in each
habitat area. Specifically, a Luehdorfia japonica image dataset was created from
the Tomoo Fujioka Butterfly Collection (Fujioka Collection) and information on
the distribution of larval hostplants. We will then analyze the regional variation
in the spotted pattern through visualization of the larval hostplant classification
and its basis for judgment from the specimen images3. To create the dataset,
digital specimen images are preprocessed and image samples are collected. At
the same time, each image sample is annotated labels for the hostplants used
during the larval stage based on the collection site information. In some cases,
the hostplant label is not a single label, but multiple labels are assigned de-
pending on the habitat. The dataset is trained and classified using the attention
branch network (ABN) [7] to improve the accuracy of visual description and
image classification tasks.

3 The technical report versions of this paper are presented in [35, 36]. In this paper,
we construct a larger Luehdorfia japonica dataset and report the results of more
detailed experiments and their analysis results.
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The number of samples in the created dataset is highly dependent on the type
of specimens present and the location of the collection. The number of Luehdor-
fia japonica in each collection site and the number of individuals collected varies
widely, resulting in a dataset with potential class imbalance. It is known that
the recognition accuracy of a dataset with class imbalance decreases in a class
with a small number of samples. In this study, we introduce error functions and
data sampling techniques that take class imbalance into account to reduce class
imbalance. This will not only improve classification accuracy but also confirm
changes in the visual explanations acquired, aiming to acquire appropriate gaz-
ing regions that support the relationship between mottled patterns and larval
hostplants.

2 Related Work

2.1 Application of Computer Vision to Biology

Several biological analyses have been performed by applying computer vision
techniques [3,6,20,21,34,38]. Cuthill et al. [3] quantitatively analyzed Müllerian
mimicry in butterflies by utilizing the distance between samples in the embedding
space obtained by triplet network [28] and categorical cross-entropy loss.

Fan et al. [6] constructed and classified a dataset of 80 swallowtail butterfly
species from Yunnan, China, and Lin et al. [20, 21] proposed an image classi-
fication model based on deep learning to identify butterfly subfamilies, genus,
and subspecies. Both studies identified the biological classification of butterflies
as fine-grained image classification tasks. On the other hand, this study deals
with a more detailed image identification task because it deals with the regional
variation of the spots in a single species of butterflies, Luehdorfia japonica. In
addition, we will not only classify but also clarify the relationship between larval
hostplants and spots using visual explanations (attention maps) obtained in the
inference process of the classification model.

2.2 Multi-label Image Classification

This study deals with multi-label image classification tasks. For multi-label
image classification, learning methods that take class imbalance into account
have been proposed [9, 10, 32]. Major approaches include devising loss func-
tions [14, 25, 27] and sampling methods during training [1, 2, 22, 23]. Since the
datasets in this study potentially have a class imbalance problem, we train them
considering the class imbalance to improve the classification accuracy.

A typical multi-label classification task in the computer vision field is pedes-
trian attribute recognition, which estimates attribute information such as gender
and clothing from pedestrian images [12,13,26,27,31,37]. For the pedestrian at-
tribute recognition task, approaches that consider class imbalance in multi-label
estimation [13,27] and inference models and learning methods that consider the
consistency of the gazing region based on the spatial characteristics of the at-
tributes to be estimated [12,26,31,37] have been proposed. Jia et al. [12] propose
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a regularization such that the features are spatially and semantically consistent.
Specifically, they propose a loss function to make the attention map of samples
in a mini-batch whose attributes are positive consistent, and an error to learn
the consistency of feature maps (vectors) compressed by weighted global average
pooling.

As described above, many pedestrian attribute recognition methods improve
recognition accuracy by incorporating semantic information of attributes to be
classified, which is prior knowledge possessed by humans, and location informa-
tion where features of each attribute are likely to appear. On the other hand, we
do not utilize prior knowledge possessed by humans or experts, but extract and
analyze characteristic micro-regions and patterns from label information that
are useful for classification. The objective is to elucidate the causes of regional
variation in geographic regions. Furthermore, we will not only develop a model
for classification by focusing on the same areas as the experts’ knowledge but also
reveal new characteristic patterns of spots that have not been revealed before.

2.3 Visual Explanations

Visual explanation is a method for presenting the basis for judgments about the
inference results of machine learning models. Major approaches include post-
hoc methods such as GradCAM [29,30] and models that embed a mechanism to
generate an attention map inside the model [7, 27, 39]. In this study, we utilize
the attention branch network (ABN) [7], which incorporates visual explanations
into inference results through an attention mechanism, to classify and analyze
each class label (larval hostplants) while indicating the areas that were gazed at
during classification.

3 Dataset

3.1 Tomoo Fujioka Butterfly Collection

Tomoo Fujioka Butterfly Collection (Fujioka Collection) is one of the most valu-
able collections of butterfly specimens in the world, with approximately 290,000
specimens of all species from Japan and related neighboring countries, and ap-
proximately 1,750 specimen boxes. To make effective use of this collection, a
database and virtual museum are being developed [15, 16]. From 2019, a reor-
ganization of the butterfly collection record information in this database in a
format compliant with GBIF (Global Biodiversity Information Facility) and S-
Net (Science Museum Net) is underway [17]. Thus, work is underway to revise
the data of the above collections into internationally accessible natural history
specimen data.

The use of this collection database and related data such as vegetation and
flora will make it possible to elucidate the regional variation of butterfly spots. In
this study, we utilize the Fujioka Collection to perform quantitative larval host-
plant classification based on images of the Luehdorfia japonica. We will focus on
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Table 1: Distribution of labels in Luehdorfia japonica dataset.

# of samples

Label (Asarum) Use in exp. Male Female

A. curvistigma ✓ 235 45
A. nipponicum ✓ 124 29
A. yoshikawae ✓ 55 10
A. megacalyx ✓ 341 99
A. nipponicum var. saninense ✓ 54 13
A. rigescens var. brachypodion ✓ 91 21
A. asaroides ✓ 92 24
A. tohokuense ✓ 42 10
A. takaoi ✓ 2,075 517
A. caulescens 1 0
A. fauriei 0 1
A. asperum ✓ 340 148
A. fauriei var. nakaianum 3 1
A. ikegamii ✓ 145 30
A. blumei ✓ 359 74

the Japanese endemic species of the butterfly, Luehdorfia japonica, because of its
huge mass and remarkable geographical variation of wing patches in the collec-
tion. First, we will examine the labels necessary for image classification and build
a dataset by utilizing the image data and label data from the Fujioka Collection
database. Hereafter, we describe the details of the dataset construction.

3.2 Luehdorfia japonica dataset

Digital specimen imaging and preprocessing To capture digital specimen
images, we first remove each specimen from the specimen box and photograph
it along with its specimen number, collection value label, size scale, and color
chart for correction (see the top row in Figure 2). Multiple images are taken
at different depths of field, and then depth composited to produce an image in
which all parts of the specimen are in focus. The bottom row in Figure 2 shows an
example of a digital specimen of Luehdorfia japonica taken by the photographer.
The image size of the digital specimen is approximately 6,500×4,000 pixels.

As mentioned above, these digital specimens contain color charts and other
parts that are unnecessary for image classification. Therefore, we remove them
as a preprocessing. Examples of preprocessed images are shown in Figure 3. All
cropped image patches were uniformly sized (see the experimental section for
details). The total number of created images is 4,434, of which 3,510 are male
and 924 are female.

Assigning hostplant label data In addition to the image preprocessing, we
annotate larval hostplant labels to each of the Luehdorfia japonica image sam-
ples. Metadata such as place of collection, date of collection, and collector were
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Fig. 2: Photography of the digital specimens of Tomoo Fujioka Butterfly
Collection. (Top) Photographing and (Bottom) an example of the digital specimens
image data.

assigned to each of the Luehdorfia japonica samples. Based on the collection lo-
cation information and the Japanese vegetation information, we assigned larval
hostplant labels to each sample [11,24].

Table 1 shows a breakdown of the labels in the Luehdorfia japonica dataset.
Note that the total number of labels does not equal the number of samples, as
a single sample may have multiple labels. From the Table 1, there are several
labels for which there are not a sufficient number at this time. Therefore, we will
limit the number of labels used in the experiment and conduct the experiments.
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Fig. 3: Examples of pre-processed Luehdorfia japonica images.

4 Method

4.1 Network Model

Figure 4 shows the network structure of the multi-label classification ABN. The
feature extractor extracts a feature map common to all labels from an input
image, and the extracted feature map is input to the attention branch. The
attention branch performs global average pooling (GAP) [18] according to each
label and obtains the classification result of each label. At the same time, the
attention map, which is a feature map obtained from the convolution layer before
GAP, is input to the perception branch. After applying weighting (attention
mechanism) to the feature maps output from the feature extractor, the final
classification result is output. This makes it possible to visualize the regions
gazed at during classification, and to perform classification using features that
emphasize the features of those regions.

4.2 Model Training Considering Class Imbalance

As described in the previous section, the dataset used in this study has a class
imbalance problem. Therefore, if we train a model naively, learning proceeds
mainly on labels with a large number of samples, which may bias the classifi-
cation accuracy. Furthermore, since the objective of this study is not only to
achieve high classification accuracy but also to analyze butterfly spots through
visualization of the regions gazed at by the model during classification, it is nec-
essary to obtain appropriate classification and reasonable gazing regions. In this
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Fig. 4: Network structure of Multi-label classification ABN. The model first
extract feature map from an input image via the feature extractor (e.g., ResNet). Then,
the extracted feature map is fed into the attention branch, where we further extract
feature map and predict classification score passing thrhough global average pooling
(GAP). Meanwhile, by using the feature map obtained from the feature extractor and
the attention maps by GAP, we compute final prediction results at the perception
branch. In addition to the prediction, we can obtain attention map as visual explana-
tion.

study, we experimentally examine changes in accuracy and acquired attention
maps by introducing a learning method that takes class imbalance into account.
Specifically, we introduce (i) an error function and (ii) data sampling that ac-
counts for class imbalance.

Loss functions The ABN error function Labn is defined as

Labn = Latt + Lper. (1)

In other words, in multi-label classification ABN, the errors (Latt, Lper) between
the output of the attention and the perception branches and the correct la-
bel is calculated. Conventional multi-label classification ABN uses binary cross-
entropy loss (BCE) for each of (Latt, Lper), but it does not learn enough class
labels with insufficient number of samples, which may cause recognition accu-
racy degradation. In this study, we use the following error functions that take
class imbalance into account.

One is a Weighted Focal Loss (WFL) [27]. WFL is a weighted error function
based on the prior distribution of labels in the focal loss [19]. Let x be the
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logit for a class c and yc be the positive solution label. Also, when defining the
probability p = σ(x) using the sigmoid function σ(·) and x, WFL is defined as
follows:

Lwfl = −
C∑
c

wc (y
c(1− p)γ log(p) + (1− yc)pγ log(1− p)) , (2)

where wc = e−ac is the weight for class c, calculated from the prior distribution
ac of class c.

The other is an Asymmetric Loss (ASL) [25]. ASL is a loss function that takes
into account the balance between positive and negative classes and is defined as
follows based on focal loss.

Lasl = −
∑
c

(yc(1− p)γ+ log(p) + (1− yc)pγ−
m log(1− pm)) (3)

where pm = max(p − m, 0) is the shifted probability to ignore errors in the
easy negative class of classification and m is a parameter representing the mar-
gin of probability to ignore errors. By adjusting the balance of the parameter
(γ+, γ−), the error calculation takes into account the balance between positive
and negative classes.

Data sampling Approaches that consider balance when learning and classify-
ing with unbalanced data include “oversampling,” which samples more samples
from rare classes, and “undersampling,” which samples fewer samples from ma-
jor classes. In this study, in addition to the aforementioned error functions, we
consider differences in discrimination accuracy and obtain attention maps by
adjusting the data sampling method. Specifically, by referring to the number of
male labels shown in Table 1, we undersampled the sample of Asarum takaoi,
which has a significantly large number of samples, and oversampled the data
with a small number of samples such as Asarum ikegamii.

Thus, we can take the class balance into account in the training process.

5 Experiments

5.1 Experimental Settings

Dataset As a dataset, we use the Luehdorfia japonica dataset described in
Section 3.2. The image samples are resized to 448×448 pixels and input to the
network. Of this dataset, we use only 3,510 male images. Among them, we use
3,503 images with 12 hostplant labels for the experiment (see the “Use in exp.”
column in Table 1), as they provide a sufficient number of samples for training
and evaluation. The 3,503 samples are divided randomly, and 2,799 are used for
training and 704 are used for evaluation. In addition, the following two types of
training sample sets are used in the experiment.
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Table 2: Classification accuracy [%].

Training set: unbalanced Training set: balanced

F1-score [%] mAP [%] F1-score [%] mAP [%]

BCE 74.49 92.26 88.68 92.81
WFL [27] 74.61 93.78 88.79 92.74
ASL [25] 81.74 89.23 80.14 92.91

Unbalanced A training set that uses the above 2,799 randomly selected sam-
ples as they are. Experiments are performed on the dataset with class im-
balance. The training dataset is affected by the class balance of the collected
dataset, resulting in a large bias in the ratio of the number of labels per
attribute.

Balanced A training set in which the data sampling was performed so that the
proportion of the number of attribute labels in the training samples is as
equal as possible according to the number of attribute labels, as described
in Section 4.2.

The the number of each training sample for each class label are shown in
Table 3.

Model As a network model, we use a multi-label classification ABN with a
backbone of ResNet-18 [8] pre-trained on ImageNet [4]. The mini-batch size
is 32 and the number of training cycles is 1,000 epochs. During training, we
apply weak data enhancements such as horizontal flip, random crop, and contrast
transformation. Momentum SGD (learning rate= 0.01, momentum= 0.9) is used
as the optimization method for all training, and the learning rate is divided by
10 at the 500 and 750 epochs.

Evaluation metrics F1-score and mean average precision (mAP) will be em-
ployed as evaluation metrics. Moreover, by visualizing the acquired attention
map, a qualitative evaluation will be conducted, and the relationship between
the gazing area and the spots will be discussed from a butterfly expert’s point
of view.

5.2 Accuracy Comparison

Table 2 shows the F1-score and mAP of averages over every larval hostplant la-
bel. Comparing the unbalanced dataset (Unbalanced) with the balanced dataset
(Balanced), the F1-score improves when using Balanced. In particular, the F1-
score is significantly improved when BCE and WFL are used, indicating that
sample balance adjustment contributes significantly to the accuracy of the loss
function without considering the balance between positive and negative classes.
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Table 3: F1-score over each class [%]. The column of “# of samples” indicates the
number of labeled samples on training dataset.

Training set Label (Asarum) #
of

sa
m

pl
es

B
C

E

W
F
L

A
SL

Umbalanced Asarum curvistigma 188 100.00 100.00 98.94
A. nipponicum 99 91.30 95.83 93.61
A. yoshikawae 44 53.33 30.76 77.77
A. megacalyx 272 66.66 75.96 67.82
A. nipponicum var. saninense 43 30.76 30.76 77.77
A. rigescens var. brachypodion 72 41.66 53.84 57.14
A. asaroides 73 97.29 94.44 97.29
A. tohokuense 33 87.50 87.50 94.11
A. takaoi 1,659 85.30 80.00 74.28
A. asperum 272 88.37 89.70 85.00
A. ikegami 115 52.38 57.14 58.53
A. blumei 287 99.30 99.30 98.59
mean – 74.49 74.60 81.74

Balanced A. curvistigma 282 100.00 100.00 100.00
A. nipponicum 294 97.95 100.00 100.00
A. yoshikawae 418 73.68 77.77 72.72
A. megacalyx 408 80.85 76.11 71.42
A. nipponicum var. saninense 408 95.23 73.68 80.00
A. rigescens var. brachypodion 223 63.41 80.00 68.57
A. asaroides 365 97.43 100.00 88.37
A. tohokuense 330 100.00 100.00 56.25
A. takaoi 610 96.17 96.60 93.57
A. asperum 408 84.76 88.23 71.35
A. ikegami 436 74.57 73.07 67.69
A. blumei 576 100.00 100.00 91.71
mean – 88.67 88.79 80.14

In addition, focusing on the difference in loss functions, ASL obtains a higher
F1-score than the other error functions when using Unbalanced. On the other
hand, the F1-score is lower for the Balanced dataset than for BCE and WFL.
This confirms that ASL is effective when training on datasets with significantly
unbalanced samples.

Next, the F1-score for each larval hostplant label is shown in Table 3. The
table also shows the number of training samples for each larval hostplant label.
The F1-score of the unbalanced case shows that ASL improves the F1-score of the
hostplants with a small number of samples, i.e., Asarum yoshikawae, Heterotropa
nipponica var. saninense, and Asarum tohokuense. ASL greatly improves the
accuracy of attribute classes with a small number of samples, i.e., a large number
of negative samples.
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On the other hand, the results using Balanced showed no significant change in
ASL accuracy, but a large improvement in BCE and WFL accuracy. The reason
for this improvement in accuracy can be attributed to the strong co-occurrence
of the hostplant labels. Specifically, from Figure 1(b), there is no possibility that
both Asarum blumei and Asarum asaroides are positive, and if Asarum fau-
riei var. nakaianum is positive, then Asarum takaoi is also positive, and so on.
The co-occurrence of positive labels for this larval hostplant classification is con-
sidered to be very strong compared to attribute estimation for pedestrian and
facial images, which are common computer vision tasks. These results suggest
that the distribution of labels is relatively simple and that a simple adjustment
of the number of samples greatly improves accuracy. When more complex com-
binations of positive labels are present, improvements can be expected from loss
functions such as ASL, but a detailed analysis of the co-occurrence and distri-
bution of hostplant labels is one of our future works.

5.3 Evaluation of Attention Maps

Figure 5 shows the average images of attention maps for each hostplant label. In
the attention maps shown in Figure 5(a-c) when using the Unbalanced training
set, there are cases where the entire wing is gazed at, and cases where strong
attention occurs in the background, which is unnecessary for classification. On
the other hand, in the result after the sample balance was adjusted (Figure
5(d-f)), the area of attention to the background was suppressed, and the area
of attention existed in the region of the geese. This indicates that the sample
balance adjustment contributes to the acquisition of stable attention, and that
stable attention maps can be obtained by data sampling.

Next, we compare the differences when the error function is changed in the
attention map using the Balance as shown in Figure 5(d-f). BCE and WFL with
high F1-score show almost no strong attention to the background area and focus
mainly on the body and wings. On the other hand, ASL showed reduced noise
compared to the unbalanced case but gazed at areas that should not be recog-
nized compared to BCE and WFL. Consequently, it is clear that sample balance
adjustment plays a significant role in obtaining highly explanatory attention
maps, and that changing the error function tends to improve the accuracy but
not the explanatory power of the attention maps.

5.4 Discussion Based on Expert Findings

Herein, we discuss the relationship between the acquired gazing areas and the
spots. Specifically, we present to the butterfly experts the attention map (Figure
5(e)) obtained by using the sample-adjusted WFL with the highest accuracy
from the above results and with a stable gazing on the wings of the butterflies.

As a consideration for the overall trend, the attentions are often hit near
the upper margin of the forewing (the middle of the costa to the middle of
the discoidal cell on the forewing). This is known to be a representative area
for experts to check when estimating the collection locality [5]. Therefore, we
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(a) Training set: unbalanced, Loss: BCE

(b) Training set: unbalanced, Loss: WFL

(c) Training set: unbalanced, Loss: ASL

(d) Training set: balanced, Loss: BCE

(e) Training set: balanced, Loss: WFL

(f) Training set: balanced, Loss: ASL

Fig. 5: The attention maps taking average over each hostplant label. The top
part of the figure shows the name of the hostplant label to which each column of the
attention map corresponds.

can say that the gazing area acquired by the multi-label classification ABN is
consistent with the general findings of experts and that the explanatory nature
presented by the attention map is valid.

In addition to the overall evaluation, we focus on the attention map for the
Asarum ikegamii. Figure 6 shows the average image of attention maps of Asarum
ikegamii and several individual attention maps. First, the attention of Asarum
ikegamii is concentrated around the rearwing (green circle in Figure 6), which
corresponds to the conventional expert’s finding. Meanwhile, the other attention
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Average image of Attention map
(Asarum ikegamii, Balanced, WFL)

Fig. 6: Attention maps for Asarum ikegamii. Top row: the average image of
atttention maps for Asarum ikegamii label. Bottom row: individual attention maps for
Asarum ikegamii label. Every attention map images are obtained from a model trained
with balanced training set and WFL.

is concentrated near the lower margin of the forewing (red circle in Figure 6).
This location differs from the expert’s findings and is one of the future issues to
be addressed, as a detailed analysis in the future may reveal new features of the
spots that have not been recognized before.

6 Conclusion

In this paper, we recognize the larval hostplant classes from Luehdorfia japonica
images and visualize the basis of decision making on the classification results
as an attention map using the multi-label classification ABN. We achieved high
classification accuracy by training with a loss function that takes into account
class imbalance and data sampling. The analysis of larval hostplant classification
and butterfly spots using the attention map revealed that the learned attention
map is focused on the areas that match the expert’s knowledge.

Our future work includes more detailed validation and the identification of
new trends in regional variation beyond the experts’ findings. In addition, we
will gradually add more Luehdorfia japonica samples to the dataset and make
the database publicly available.
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