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Abstract. In biodiversity research scientists now routinely acquire au-
dio recordings of vocalizing bird species and are then faced with the task
of identifying the species audible in these recordings. Here, we analyze
the accuracy (precision, recall and F1 score) of several deep networks,
in conjunction with pre-training and data augmentation techniques, for
classifying audio recordings of twelve bird species under multiple data
scarcity settings.
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1 Introduction

A well-established indicator of ecosystem health is the variety of bird species [10].
Traditionally, ornithologists identify and count bird species in the study areas.
This approach is time-consuming and expensive. Another approach is the com-
bination of passive acoustic monitoring [7, 17, 27, 35] and automated bird sound
classification [24] which facilitates the implementation of monitoring systems.
These systems can enable long-term measurements of biodiversity and can as-
sist ornithologists. The latter approach is shown to be effective, e.g., in [25, 43].
The annual BirdCLEF Challenge [11, 19, 20, 22, 23] fosters innovation in model
and algorithm development for bird sound classification, the most effective of
which are deep networks [11,13,21,23–25,32,34].

Inferring decisions with a deep network from data distributed unlike the
data it was trained on can result in lower accuracy. Thus, a fine-tuning of the
parameters of the network can become necessary. This requires the annotation
of additional data, which can be expensive.

In order to study this data efficiency problem in the context of passive acous-
tic monitoring of bird species, we make the following contributions: Firstly, we
collect and annotate audio recordings of twelve bird species in a rather chal-
lenging environment. Secondly, we learn the parameters of several convolutional
networks with a varying fraction of available training data, both from a random
initialization and from an initialization learned on a large pre-training dataset.
Thirdly, we compare the different models and analyze how much data is neces-
sary to obtain satisfactory results. The source code to reproduce the experiments
is available from [37]. The collected data and annotations are available upon re-
quest.
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2 Related Work

The task of bird sound classification is studied in [11, 13, 21, 23–25,32,34], most
notably BirdNET [25]. The authors of [39] evaluate transfer learning of hybrid
CNN-LSTMs [1,2], attention-based CNN-LSTMs [47] and multi-head transform-
ers [9,41] for the task of bird sound classification. An interpretable convolutional
network for bird sound classification is proposed in [16], which computes proto-
types of bird sounds.

Apart from the task of classification, the authors of [6, 28, 33, 38] study the
task of clustering bird sounds by k means clustering [33], k nearest neighbor
clustering [6], clustering with respect to all elements of three given clusters [28,
Section 2.2] and correlation clustering [38].

Self-supervised representation learning for natural images is studied in [3–5,
14, 36, 46]. The authors of [29] benchmark the contrastive self-supervised meth-
ods SimCLR [5], Barlow Twins [46] and FroSSL [36] for the task of few-shot
bird sound classification, showing competitive results compared to supervised
learning approaches. A joint contrastive and generative pretext task for the task
of audio representation learning is suggested in [12].

The authors of [42] propose a model for sound separation that separate mul-
tiple audio sources audible in the same sound recording. This approach has been
shown to increase the accuracy of bird sound classification [8].

3 Models

3.1 Data Representation

We consider a finite, non-empty set S of sound recordings, a feature space
X ⊆ Rn with n ∈ N, a finite, non-empty set C of classes, and a label space
Y = {0, 1}C , i.e., a multi-label classification problem. Moreover, we consider the
features x : S → X and labels y : S → Y . In our experiments, each recording
s ∈ S has a duration of 3 seconds and its features xs are given by the pixel
values of the mel spectrogram computed with a frame width of 1024 samples,
an overlap of 768 samples and 128 mel bins, rescaled to 128× 384 pixels.

3.2 Architectures

We employ the convolutional networks ResNet-{18, 34, 50} [15], EfficientNet
(small) [40] and WideResNet50 [45]. We adjust these architectures by setting
the number of input channels for the first convolutional layer to one. Apart
from these architectures, we re-implement BirdNet [25]. In addition, we evaluate
the BirdNet-Analyzer [18]. Each model defines a function fθ : X → RC where
θ ∈ Θ = Rm are the m ∈ N parameters of the respective architecture.
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4 Learning

The parameters of the models are learned by minimization of the logistic loss. In
practice, we compute the parameters θ̂ ∈ Rm heuristically by stochastic gradient
descent with an adaptive learning rate. As software, we employ AdamW [26] with
mini-batches B ⊆ S. As hardware, we use a single NVIDIA A100 GPU with 16
AMD EPYC CPU 7352 cores, equipped with 32 GB of RAM.

We set the initial learning rate to 10−4, the batch size to 64, and the max-
imum number of steps to 400,000. We terminate the optimization as soon as
the F1 score on the training set has not improved for 2,000 steps. The class-
distribution within each batch is on average uniform, i.e., we use over-sampling
to counteract class imbalance.

5 Experiments

5.1 Dataset

In this section, we describe the fine-tuning and pre-training datasets. We option-
ally apply data augmentation during learning, more specifically, horizontal and
vertical roll, SpecAugment [30], and the addition of white noise, pink noise or
environmental noise from ESC-50 [31]. We apply each type of augmentation with
a probability of 20%. Thus, a sample can be augmented by multiple techniques
but at most one type of noise. For further detail, we refer to the source code [37].

Fine-tuning Dataset. We collect recordings at a sampling rate of 32 kHz
with a total of 60 AudioMoths, a low cost recorder [17], deployed at 75 different
sites. Using BirdNET [25] we filter 3s-chunks of audio for the presence of one
of 12 bird species. These chunks are validated and, if possible, corrected by
ornithologists. This defines a dataset D; see Table 1 and Figure 1. We partition
D into five stratified folds {Di}i∈{0,1,2,3,4}. Each fold defines a training and a test

Bird Species # Sites nc

Alauda arvensis 46 1056
Lanius collurio 12 606
Motacilla flava 41 491
Passer montanus 20 268
Saxicola torquatus 13 340
Sylvia curruca 10 636
Anthus pratensis 25 367
Emberiza calandra 21 660
Emberiza citrinella 40 626
Linaria cannabina 20 480
Saxicola rubetra 6 117
Sylvia communis 24 611

Table 1: Above, we report for the fine-tuning dataset D and for each species c ∈ C
the number of sites the species has been detected at and the number of samples nc.
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Fig. 1: Above, we show for the fine-tuning dataset D and for each species c ∈ C the
geographic coordinates of the sites the species has been detected at.

set, traini = D\Di and testi = Di. Let nc be the number of instances in traini

containing the bird species c ∈ C. With respect to an additional parameter
f ∈ [0, 1], we define the training datasets traini,f , which is a randomly sampled
subset of traini and contains ⌊f · nc⌋ samples of bird species c. We sample in
such a way that for any f ′ ≥ f , traini,f ⊆ traini,f ′ .

Pre-training Dataset. From Xeno-Canto [44], we collect 317,656 recordings of
a total of 8,968 bird species of quality A or B, each recording containing only a
single species. We resample the files to 44,100 Hz and split them into 3s-chunks.
We apply the signal detector proposed in [25] to exclude non-salient chunks. This
defines the dataset pre-train consisting of 1,026,539 audio chunks.

Metrics. In order to measure the accuracy of decisions ŷ : S → {0, 1}C , we
compute the number of true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN) for every class c ∈ C individually. From these, we
compute the macro-averaged precision, recall and F1 score.

5.2 Experiments

We consider three initializations of the parameters θ of the models defined in Sec-
tion 3.2: (1) randomly distributed parameters, (2) parameters learned from pre-
train without augmentation, and (3) parameters learned from pre-train with
augmentation. We learn the initializations (2) and (3) as described in Section 4.
For all initializations, we learn the parameters on the datasets traini,f , with and
without augmentation, and apply it to the independent dataset testi, for every
i ∈ {0, 1, 2, 3, 4} and for every f ∈ {0.1j | 1 ≤ j ≤ 10}. After completion of the
optimization and for every model, we infer independent decisions ŷs ∈ {0, 1}C
for every recording s ∈ S and class c ∈ C by asking whether fθ(xs)c ≥ 0 (ŷsc = 1)
or fθ(x

s)c < 0 (ŷsc = 0).
In Figure 2 we show the mean, minimum and maximum F1 score over all folds,

0 ≤ i ≤ 4, as a function of the fraction of samples f , and for models initialized
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Fig. 2: We depict above the F1 score of the models ResNET-{18, 34, 50}, BirdNET,
WideResNET-50 and EfficientNet (small) as a function of the fraction of samples per
species. We show these for models initialized with randomly distributed parameters
(left) and from parameters learnt on pre-train without (middle) and with (right)
augmentations. Also, we report these metrics without (top) and with (bottom) aug-
mentation during fine-tuning. Each datapoint shows the mean, minimum and maximum
of the F1 score across the five test folds.

with random parameters (Column 1), with parameters learned from pre-train
without augmentation (Column 2), with parameters learned from pre-train
with augmentation (Column 3); and with parameters fine-tuned on traini,f ,
without augmentation (Row 1) and with augmentation (Row 2). In Table 2, we
report for each model at f = 1.0 the mean of the macro-averages of the precision,
the recall and the F1 score across the five test folds. In Table 3, we report for
f = 1.0 and the model with the highest mean F1 score the precision, recall and
F1 score for each species of bird.

From Figure 2 (Column 1), we observe: On the one hand, learning without
augmentations during fine-tuning (Row 1) leads to unstable results for the F1

score across the five test folds, e.g., the difference between the minimum and
maximum F1 score across the five folds for the BirdNET architecture at f = 0.1
can be as high as 10%. On the other hand, applying augmentations during
fine-tuning (Row 2) leads to more consistent F1 scores across the five folds for
all considered models and all fractions of samples f . Moreover, when learning
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without data augmentations (Row 1) no model except the BirdNET architecture
shows saturation of the F1 score, even when using all data samples, f = 1.0. In
contrast, learning with data augmentations (Row 2) leads to almost saturated
F1 scores, even for f ≥ 0.3. Lastly, we observe an increase in the F1 score when
using augmentations as opposed to not using augmentations, which is higher for
smaller datasets used for fine-tuning, i.e., a low f .

Pre-train FT Aug. Precision Recall F1

BirdNet-Analyzer (conf. = 0.1) [18]

0. - - 88.5 81.0 83.3

ResNet-18

1. no no 93.1 79.4 85.3
2. no yes 94.8 92.7 93.7
3. yes no 95.9 92.6 94.2
4. yes yes 95.5 93.7 94.5
5. yes + Aug. no 95.8 93.8 94.7
6. yes + Aug. yes 95.5 93.7 94.5

ResNet-34

1. no no 92.2 79.2 84.7
2. no yes 95.0 92.7 93.8
3. yes no 95.5 93.6 94.5
4. yes yes 95.1 93.7 94.3
5. yes + Aug. no 95.8 94.3 95.0
6. yes + Aug. yes 95.4 93.7 94.5

ResNet-50

1. no no 90.1 78.3 82.4
2. no yes 94.8 92.9 93.7
3. yes no 95.5 92.9 94.1
4. yes yes 94.9 94.0 94.4
5. yes + Aug. no 95.5 93.9 94.7
6. yes + Aug. yes 95.4 94.5 94.9

Pre-train FT Aug. Precision Recall F1

BirdNet [25]

1. - no 92.5 91.1 91.7
2. - yes 94.1 93.4 93.6
3. yes no 94.7 95.3 95.0
4. yes yes 94.3 95.9 95.1
5. yes + Aug. no 94.5 95.2 94.8
6. yes + Aug. yes 94.5 96.0 95.2

WideResNet-50

1. no no 92.1 82.6 86.6
2. no yes 94.9 92.4 93.5
3. yes no 95.5 93.2 94.2
4. yes yes 95.2 93.6 94.3
5. yes + Aug. no 95.6 93.9 94.6
6. yes + Aug. yes 95.7 94.1 94.8

EfficientNet (small)

1. no no 91.4 87.4 89.2
2. no yes 94.5 93.7 94.0
3. yes no 95.2 93.9 94.4
4. yes yes 95.1 95.2 95.1
5. yes + Aug. no 95.5 94.8 95.1
6. yes + Aug. yes 95.4 95.3 95.3

Table 2: Above, we report the median of the macro-averaged precision, recall and F1

score across the five test folds for f = 1. We mark in boldface the best entry for a
specific model, and underline the best entry across all models.

Bird Species Precision Recall F1

Alauda arvensis 90.7 90.4 90.6
Lanius collurio 99.3 98.5 98.9
Motacilla flava 92.6 93.5 93.0
Passer montanus 95.9 95.4 95.6
Saxicola torquatus 95.1 90.7 92.8
Sylvia curruca 99.2 99.5 99.4
Anthus pratensis 96.8 97.6 97.1
Emberiza calandra 92.0 94.5 93.2
Emberiza citrinella 90.9 92.2 91.5
Linaria cannabina 98.9 98.3 98.6
Saxicola rubetra 97.4 95.7 96.5
Sylvia communis 95.7 97.5 96.6

Table 3: Above, we report the mean of the precision, recall and F1 score across the five
test folds per species and for the overall best performing model Efficient-Net (small).
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In Figure 2 (Columns 2-3), we observe: Initializing the parameters of the
models with parameters learned from pre-train, with or without augmentation,
leads to the F1 score being more consistent across the five test folds, irrespective
of whether or not augmentations are applied during fine-tuning. For f ≥ 0.3,
we obtain almost saturated F1 scores with only marginal improvements for in-
creasing the fine-tuning dataset size, i.e., increasing f . Applying augmentations
during fine-tuning for both initializations leads to marginal improvements in the
F1 score for both model initializations.

In Table 2, we observe: Both using augmentations during fine-tuning and
initializing the models with parameters learned from pre-train lead to increas-
ing performance of the model with respect to the F1 score. With an F1 score
of 95.3%, the EfficientNet architecture initialized with parameters learned from
pre-train with augmentations and fine-tuned with augmentations (Row 6) is
the best performing model in this study. Interestingly, from a comparision of
ResNet-18 (Row 3), BirdNet (Row 6) and EfficientNet (Row 6), we observe that
the EfficientNet architecture is neither the best performing model with respect
to precision (by a margin of 0.5%) or recall (by a margin of 0.7%). Hence, the
EfficientNet architecture offers the best tradeoff between precision and recall in
this study.

In Table 3, we observe: On the one hand, even though Alauda arvensis is
the majority species in the dataset (cfg. Table 1), the EfficientNet architecture
performs worst for this species with respect to the F1 score. On the other hand,
the model’s F1 score for the minority class Saxicola rubetra is substantially
higher than for the species Emberiza citrinella, Emberiza calandra and Motacilla
flava for which we have more training data.

6 Conclusion

We examine six neural network architectures for bird sound classification empir-
ically, in different data scarcity settings. For those audio recordings of 12 bird
species considered in the experiments, we conclude that both data augmentation
and initialization with parameters learned from a pre-training datasets stabilizes
the accuracy of the respective models across different test folds and improves ac-
curacy across all data scarcity settings. With all the available training data, the
most accurate architecture is EfficientNet. With only 10% of the training data,
i.e., between 10-80 recordings per species, we still obtain satisfactory results for
the classification of the 12 species considered in this study. Adjusting the param-
eters to the data distribution increases the accuracy compared to a non-adjusted,
pre-trained model by a margin of 12%.
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like to thank our colleagues at the Chair of Computational Landscape Ecology
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