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Abstract. Species distribution models (SDMs) correlate species occur-
rences with environmental conditions and underpin much of ecological
research. A key consideration in developing SDMs is selecting the opti-
mal set of environmental predictor variables, which vary depending on
the specific application and species involved. Existing SDMs approaches
are limited to a fixed set of predictors defined a priori. This becomes
problematic whenever predictors are suboptimal for a particular species
or research question to be answered, or when some predictors are un-
available at a given location. To address this, we introduce MaskSDM, a
versatile approach that allows end-users to choose relevant variables and
gain insights into their contributions to predictions. Our approach em-
ploys masked data modeling to learn robust data representations. This
allows MaskSDM to effectively handle missing data during both train-
ing and inference, addressing a common challenge in real-world geospa-
tial datasets. Evaluations against alternative methods demonstrate that
MaskSDM offers improved predictive performance and facilitates valu-
able analyses of variable contributions.

Keywords: Species Distribution Modeling · Deep learning · Masked
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1 Introduction

With the ongoing biodiversity crisis, species distribution models (SDMs) play a
key role in monitoring and predicting the distribution of species across various
ecosystems. These models, which relate species occurrences to environmental
conditions [13], are essential for conservation biology [21]. They are of great in-
terest for understanding current species distributions [15], identifying potential
habitats [20], and predicting future changes driven by climate change, habitat de-
struction, and invasive species [2,31]. Such a wide range of applications, however,
requires careful determination of problem-specific characteristics, as ecological
environments are diverse and modeling challenges manifold. A critical aspect in
this regard is the selection of appropriate environmental predictor variables for
the model [1,4,14,29]. For instance, the distribution of many species is impacted
by the human footprint [16]; however, when aiming to understand species’ ecolog-
ical niches, human influence is typically excluded from the model. Conventional
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SDMs are generally incapable of adapting to such divergent research questions
using a single model. Being able to explicitly select input variables of SDMs
for each specific task in a generic modeling pipeline presents several challenges,
which are outlined below.

First, existing multi-species distribution models (which learn the distribu-
tions of multiple species with a single model [25]) assume the same set of input
variables during training and inference. This prevents the selection of input vari-
ables based on the differing needs of different species. We argue that end-users of
SDMs should ideally decide which input variables are significant for their specific
applications and species. Second, the SDMs currently used for ecological expla-
nations are often too simplistic [13,30], limiting their ability to capture complex
relationships between the input variables. This hinders accurately providing eco-
logical insights by revealing which input variables contribute to the distribution
of species and how they do so [6]. Third, existing SDMs require the availability of
all the considered input variables for the region of interest. However, some input
variables may be missing or known to be noisy or uncertain for some locations
during training or inference. This calls for multi-modal solutions able to handle
situations with variable (numbers of) inputs.

To address these challenges, we introduce MaskSDM, a method inspired by
recent advancements in deep learning, which has demonstrated innovative appli-
cations in ecology [35] and SDMs [5,7,41]. MaskSDM enables end-users to select
relevant variables at inference and provide insights into their contributions to
predictions, while effectively handling missing data. To do so, we leverage masked
data modeling, which has proven to be effective in learning robust data repre-
sentations in natural language processing [9], computer vision [22], and various
other data types [28]. Masked data modeling involves randomly hiding parts of
the input data, forcing the model to learn and infer the missing information
from the remaining predictors. This is typically achieved through a reconstruc-
tion objective during a pre-training step, where the model predicts the missing
parts [9, 22, 27]. We adopt an approach in which the model directly learns the
species distribution in a supervised manner but with missing masked input vari-
ables. Our MaskSDM approach offers several key benefits:

1. Flexibility for end-users. MaskSDM allows to select only the variables deemed
relevant for specific tasks and species of interest.

2. Analysis of variable contributions. MaskSDM enables a detailed analysis of
how different input variables contribute to species predictions.

3. Robustness to missing input variables. MaskSDM handles missing input vari-
ables during both training and inference. This ensures that all variables can
be included in the model, even if some are unavailable for certain samples.

We evaluate MaskSDM using sPlotOpen [34], a global dataset comprising plant
species survey data. Our approach consistently outperforms other SDM methods
across various sets of input variables. Furthermore, we demonstrate the effective-
ness of MaskSDM through examples that showcase its ability to analyze variable
contributions and its adaptability in diverse scenarios, paving the way for the
creation of a foundation model for SDMs [3].
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Fig. 1: Overview of MaskSDM. (a) During training, our method employs a mask token
to indicate missing input variables to the Transformer model. Additionally, this mask
token is used to randomly mask each input variable with a probability p. (b) During
inference, MaskSDM can take any subset of variables as input to predict the presence
of species of interest.

2 Method

SDMs typically predict the likelihood of observing a species in a given location
based on a predefined set of input variables E = {x1, x2, . . . , xN} representing
environmental conditions. These variables are usually assumed to be consistently
available and of the same data type [36]. Our approach, called MaskSDM, is
capable of learning from multiple types of data inputs, referred to as modalities,
while effectively handling missing modalities. This enables MaskSDM to predict
the presence of species of interest by exploiting any subset of variables E ′ ⊂ E .
To achieve this, we employ masked data modeling to learn species distributions
in a supervised manner. The general MaskSDM approach (Fig. 1) is explained
in the following, while the specific implementation details are provided in Sec. 3.

Tokenization The different modalities are first converted into a standardized
format through a process called tokenization, which works by projecting in-
puts to high-dimensional feature vectors (tokens) of prescribed size [19,28]. The
functions f j producing these tokens tji = f j(xj

i ) are the tokenizers, with each
modality having a dedicated tokenizer tailored to its specific characteristics.
Pre-trained tokenizers, trained on larger datasets, are available for some vari-
ables [26, 28]. They can be utilized to produce more informative and general
tokens and save computational time. Otherwise, the tokenizers can be trained
alongside the rest of the model parameters. While our experiments focus on tabu-
lar data and satellite image features as these are commonly used in SDMs [10,17],
MaskSDM can be easily extended to incorporate other types of data since each
modality has its own tokenizer [28]. Given the diverse distributions of variables
in tabular data, we tokenize each input variable individually [18, 19]. Then, to
model complex, non-linear interactions between the tokens of the different input
variables, all the tokens are given as input to a transformer encoder model [38].
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Masked Data Modeling During training, MaskSDM employs the masked
modeling paradigm to learn robust species distributions. This is achieved by
replacing missing input variables with a mask token tMASK, signaling to the
transformer encoder that a variable is absent. This mask token is learned as
part of the model training process, alongside the other parameters of the to-
kenizers and the transformer encoder. By using mask tokens, we can leverage
all available samples during training, even if some values are missing. This is
particularly beneficial for real-world datasets, which are often incomplete. For
example, we use a dataset containing meta-information (see Sec. 3) that helps
explain and disentangle the contributions of different input variables. However,
these metadata are not available for all samples. Our approach ensures effective
utilization of the dataset despite missing values.

To ensure that the model is robust to any subset of input variables, we
randomly mask additional input variables during training, even when they are
available [28]. At each iteration, we draw a random number uniformly between
0 and 1, which is the probability of masking each input variable. This stochastic
approach forces the model to handle scenarios in which only a limited number
of variables are accessible at times, while nearly all variables may be available at
others. During inference, MaskSDM offers the capability to replace variables that
are missing, or else deemed unsuitable or irrelevant, with the mask token. More-
over, it allows to predict species distributions using different subsets of variables,
observing how these choices affect prediction maps and model performance. As
a result, users can gain valuable insights into the collective impacts of various
input variables on the model’s output.

3 Experimental Setup

Dataset We use the sPlotOpen dataset [34], which comprises 95,104 vegeta-
tion plots recorded worldwide. This dataset includes plant species presence and
absence data, where the presence of a species is recorded if it is observed in
a given plot. To reduce the training time of the model and ensure sufficient
data for each species, we focus on predicting the distributions of species with at
least 1,000 observations, resulting in a total of 228 species. We use two differ-
ent methods to divide the data into training, validation, and test sets. The first
method involves random splitting of the plots to evaluate the model’s interpola-
tion capacity. The second method employs spatial blocked cross-validation [32]
to assess the model’s extrapolation capacity (see Appendix A for splits). This
approach simulates more realistic scenarios, such as predicting the spread of in-
vasive species [2], ensuring that the model can generalize to new, unseen areas.
We collect predictor variables from WorldClim [24] and SoilGrids [23] for each
vegetation plot. WorldClim provides essential climate data on temperature and
precipitation, widely used as predictors in SDMs [14]. SoilGrids supplies infor-
mation on soil properties, such as organic carbon content, pH levels, and texture.
Additionally, we incorporate human influence data using human footprint maps,
encompassing nine variables representing human pressure [39], such as popu-
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lation density and nightlights. The longitude and latitude coordinates are also
provided to the model, as spatial information has been shown to enhance the
performance of SDMs in certain contexts where geographic processes are more
influential [11,13]. The sPlotOpen dataset also includes supplementary variables
for some plots, such as topographic information (elevation, aspect, slope), and
metadata like location uncertainty, surface area, and the coverage and heights
of various vegetation layers. This results in a total of 61 tabular data variables,
all standardized before input into the model. It is crucial to note that while the
WorldClim, SoilGrids, and coordinate variables are consistently available for ev-
ery plot, other variables are frequently absent (see Table 2 of Sabatini et al. [34]).
Finally, image features derived from Sentinel-2 satellite images are incorporated
using SatCLIP models [26]. These are available for all plots.

Model architecture and training The input variables in the tabular data
are tokenized using periodic activation functions [18], followed by a linear layer
and ReLU. This approach has demonstrated improved performance in encoding
numerical values [18] and is particularly effective for geographic coordinates in
capturing features at different scales [33]. For the satellite image features, we
utilize the SatCLIP encoder (with 40 Lagrange polynomials) [26], distilled from
the ViT16 model [12] trained on satellite images. This encoder serves as the
tokenizer, generating tokens that represent characteristics of the satellite images.
The transformer encoder follows the architecture used in the FTTransformer [19].
It consists of three identical blocks, each processing tokens of size 192 as both
input and output. The number of tokens corresponds to the number of input
variables. Each block employs self-attention with 8 heads and a feed-forward
network, interleaved with layer normalization and dropout with probability 0.1.
Following these blocks, average pooling aggregates the tokens outputted by the
final block into a vector of size 192. Subsequently, a linear prediction head with
the sigmoid function is applied to generate suitability scores for the 228 species.
We optimize the model parameters using stochastic gradient descent with a
learning rate of 0.01 and a batch size of 256. To address the class imbalance
between presences and absences, we exploit a weighted binary cross-entropy for
multi-label classification, with species weights defined according to Zbinden et
al. [40]. The model was trained for 300 epochs, with early stopping based on the
area under the receiver operating curve (AUC) on the validation set.

4 Results

We analyze the effectiveness of MaskSDM compared to common baselines for
tabular data (MLP, ResNet, and FTTransformer) [19], where missing values are
imputed using the mean of the respective variable [37]. Tab. 1 shows the average
AUC across all species on the extrapolation test set using different subsets of
input variables. MaskSDM consistently outperforms the baselines, with the per-
formance gap widening as fewer variables are available. Notably, the important
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Table 1: AUC performance comparison of MaskSDM to different baselines for various
subsets of input variables. The number in parentheses indicates the number of input
variables in each subset. Note that average temperature is included as part of the
WorldClim data. The other subsets are not overlapping.

In
p
u
t

V
ar

ia
b
le

(#
) Avg. Temperature (1) ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

WorldClim (19) ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SoilGrids (8) ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Topographic (3) ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Location (2) ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Human footprint (9) ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Plot metadata (20) ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Satellite image features ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

M
et

h
o
d MLP [19] 69.9 75.5 N/A 88.1 89.0 89.7 91.1 91.2 91.5 N/A

ResNet [19] 72.5 80.7 N/A 87.3 90.7 91.5 93.4 93.4 94.7 N/A
FTTransformer [19] 72.2 75.3 70.2 82.1 86.0 87.3 91.8 91.9 93.7 94.3
MaskSDM (ours) 80.3 88.2 88.9 91.6 92.6 93.3 93.3 93.4 94.7 94.8
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Fig. 2: Comparison of the MaskSDM AUC performance between interpolation and ex-
trapolation testing tasks using different subsets of input variables. The "Environment"
subset includes variables from WorldClim, SoilGrids, and topographic data.

difference between MaskSDM and the baseline model with the same architec-
ture (FTTransformer) and training procedure highlights the effectiveness of the
masked data modeling approach. This is because the mean imputations in the
baselines are treated as genuine data points, while MaskSDM explicitly marks
missing variables with a mask token. In addition, the ResNet baseline performs
better than the FTTransformer baseline, suggesting that there is potential for
improvement in the base implementation of the FTTransformer architecture.

In Fig. 2, we analyze the contributions of different input variables to the per-
formance of the model, comparing the test scenarios of interpolation (Fig. 2a)
and extrapolation (Fig. 2b). Unlike traditional ablation studies that require re-
training for each combination of input variables, our approach utilizes a single
model for all combinations (same for Tab. 1), showcasing the simplicity and
efficiency of MaskSDM in analyzing variable contributions. As anticipated, the
AUCs are higher for interpolation splits than those for more challenging ex-
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Fig. 3: Distribution of Anthyllis vulneraria with different subsets of input variables.

trapolation splits. In both cases, environmental variables alone provide strong
performance, with modest further improvements seen when adding satellite im-
age features. However, incorporating human footprint variables does not sig-
nificantly improve performance when combined with other variables. Likewise,
location data yields only minimal performance gains for interpolation and no
improvements for extrapolation, which aligns with our expectations.

Finally, we illustrate the utility of MaskSDM in visually disentangling the
contributions of each variable to the predictions by comparing prediction maps
generated using different subsets of input variables, as shown in Fig. 3. We focus
on the distribution of Anthyllis vulneraria, a medicinal plant native to Europe,
whose distribution is significantly influenced by temperature, precipitation, and
soil nutrients [8]. The prediction maps confirm the complementary roles of cli-
matic and soil variables, with climatic variables producing coarser predictions
compared to the finer-grained predictions of soil variables.

5 Conclusion

In this work, we introduce MaskSDM, a flexible approach for handling missing
input variables in SDMs that can be tailored to the specific needs of end-users,
while facilitating the analysis of variable contributions. By leveraging masked
data modeling with transformers, MaskSDM effectively integrates various data
sources, even when faced with missing or incomplete modalities. We plan to
evaluate MaskSDM with additional data modalities and presence-only datasets,
which are prevalent in SDMs. We also aim to conduct in-depth analyses of vari-
able contributions to derive ecological insights, ultimately supporting efforts to
address the ongoing biodiversity crisis.
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