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Abstract. Individual tree species labels are particularly hard to acquire
due to the expert knowledge needed and the limitations of photointer-
pretation. Here, we present a methodology to automatically mine species
labels from public forest inventory data, using available pretrained tree
detection models. We identify tree instances in aerial imagery and match
them with field data with close to zero human involvement. We conduct
a series of experiments on the resulting dataset, and show a beneficial
effect when adding noisy or even unlabeled data points, highlighting a
strong potential for large-scale individual species mapping.

Aerial image Detections

Field data

Fig.1: National forest inventories provide a standardized and extensive source of
species information at individual level. We perform individual tree detection on aerial
photography to extract individual positions and match them with the field data to
extract deep learning-ready patches with species labels.
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1 Introduction

Monitoring trees is essential for addressing biodiversity loss and climate change,
maintaining ecosystem services, and guiding global conservation and restora-
tion efforts [6,/18]. Tree data serve to provide baselines, track changes over time,
train and validate ecological models, as well as inform policies and decision mak-
ing [9]. While forest inventories provide high-quality tree data, such as species
and ground measurements, they are labor-intensive, costly, and often limited
in spatial and temporal scope [9]. Remote sensing methods through aerial and
satellite images offer broader spatiotemporal coverage for tree monitoring, but
lack the precision and resolution of ground surveys [6,/9]. Recent advances in
deep learning have begun to optimize this tradeoff between detail and scale by
linking field and image data |14]. This has, for instance, enabled the leap from
general tree cover assessments to individual tree counts and traits such as height
or biomass using aerial and satellite images [4}/24,/33]. Yet, our current capabil-
ities fall short in identifying tree species at large scales, hindering new avenues
for ecological research and environmental management.

Bridging the gap between remote sensing and terrestrial data is needed to per-
form species identification. While high-resolution aerial imagery is now widely
accessible in many countries, species data at the individual tree level is often
nonexistent or not publicly available [35]. National Forest Inventories (NFIs)
are invaluable repositories of tree species data, meticulously collected through
extensive efforts, which have evolved from focusing on productive purposes to
embracing a broader range of ecological and environmental variables |35]. How-
ever, trees outside NFIs plots, as well as trees outside of forests such as those in
agricultural and urban landscapes, are left unmonitored [23]. Furthermore, NFIs
often do not provide the precise locations of the parcels (and thus individual
trees) [27,:30|, which are key for matching ground-based with remotely sensed
information [12].

In this study, we develop a framework for performing tree species recognition
at scale using publicly available aerial images (with pixel resolution of 15-25 cm)
and publicly available forest inventory data. Our approach involves three main
steps: (1) mining individual trees detections in aerial images using pretrained
deep models; (2) matching detected trees and NFI data to build a dataset of
individual trees; and (3) training and validating a deep learning model for species
recognition across forest and non-forest ecosystems.

2 Related Work

Recent years have seen groundbreaking advances in mapping overstory trees in
satellite and aerial imagery at scale using deep learning approaches, including
tree counting [|4], bounding box detection |37], tree segmentation [10,/24], and
heatmap peak detection |3|. But identifying individual tree species can be chal-
lenging due to insufficient image resolution 2|, the variability in species traits and
the structural complexity of the ecosystem [2,8]. A number of studies have classi-
fied species using remote sensing with a certain accuracy |2}48})25,31,40l41], with a
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notable effort recently on building large-scale datasets of urban tree species |1,/5],
one species over large areas [16], or monospecific forested areas [11] using public
data. However, to our knowledge, there is no existing dataset for individual tree
species recognition "in the wild", i.e. in mixed forests and trees outside of forests
at scale, with no assumption of species distribution.

A key challenge hampering individual species identification is the lack of reli-
able labels at individual level. While NFIs do produce individual level measure-
ments (mostly in Europe) [9], there is a high uncertainty on individual positions
due to the accumulation of noise from GPS measurements, image registration,
and temporal mismatches. This particular situation of high volumes of data that
also come with a high level of noise is not uncommon in remote sensing, and
has been addressed through various works exploiting unreliable labels at large
scale for canopy height mapping [20], individual tree detection [37], or building
mapping [13]. Parallel to this line of work, recent advances in semi-supervised
learning [32,/38,/39] are a valuable toolbox for building label-efficient methods.

3 Dataset Construction

We collected aerial imagery from publicly available campaigns conducted by the
Spanish National Plan for Aerial Orthophotography (PNOA) [26]. The images
have a ground sampling distance (GSD) of 15-25c¢m, and include four bands as
RGB + NIR. We covered over 65,000 km? in the provinces of Badajoz, Céceres,
Madrid, and Leén, chosen for their diverse Mediterranean climates, from xeric
to humid and continental, and altitudes ranging from 200 to 2,648 meters above
sea level. For the field data, we made use of the 4th NFI of Spain [17], which
collects extensive data at national-level about forests and their evolution, both
from a forest management and ecological perspective. It distributes plots roughly
at the intersections of a 1 km? cell grid, which are monitored every 10 years.
Plots consist on circular parcels, where all trees with a trunk diameter > 7, 5cm
are recorded in a 25m radius. This includes identifying tree species, recording
their position using local coordinates from the center of the plot, measuring
functional traits such as diameter and height, and evaluating their health status
among other attributes.

3.1 Individual Tree Detection

We use the aerial imagery and available models to perform individual tree de-
tection. In recent years, there has been signficant progress in tree detection,
from a fruitful combination of deep vision models and large-scale labeling ef-
forts [314,/7,[10,21}/36].

An ensemble of models was employed to predict individual tree positions.
The ensemble includes two types of models:

— Models trained for pixel-wise classification (segmentation) on rasterized poly-
gon labels for individual crowns. We used a combination of the Tversky [29]



4 D. Gominski et al.

and Focal 22| loss functions. The Tversky loss encourages a high overlap
between predictions and labels, while the Focal loss focuses on misclassified
pixels, making them complimentary.

Lseg =0.6 * Ltversky + 0.4 % Ltgcal (1>

— Models trained for individual tree detection with Gaussian heatmap mod-
elling [34], on point labels. Each point p at position (z,y) generates a 2D
Gaussian kernel

(i—$)2+(j _y)2> (2>
202

with a fixed-size standard deviation o. Individual Gaussian kernels are max-

pooled pixel-wise to give a target heatmap, for which we optimize with a

simple MSE loss

hf’j = exp(—

Lim = ||h —h[jz, h = max(h?) (3)
P

Segmentation models predict the extent and shape of the canopy cover, but
tend to output a continuous mask in dense forests. On the other hand, heatmap-
based detection models give an equal weight to each individual tree which encour-
ages an accurate positioning and count of predictions, but can fail to capture
the extent of the crown area since they train with a fixed o. With pixel-wise
ensembling, we exploit the synergy between those two approaches and get pre-
dictions that are more stable, more accurate, and that better predict crown area
and center location. In both cases, we use a simple UNet [28] architecture with
a ResNet50 [15] backbone.

We trained models on two datasets. The first dataset contains around 100k
individual polygons with aerial imagery in Rwanda [24], RGB 25cm GSD. The
second dataset contains around 40k individual points with aerial imagery in
France, RGB 20cm GSD. The Rwanda dataset was used with segmentation and
heatmap detection (after converting the polygons to their centroids), and the
France dataset was used with heatmap detection only. Every dataset/model
combination was systematically trained on three random 80/20 train/val splits.
This gives a total of 9 models.

After predicting with each model separately, the 9 outputs are merged into
a final raster with pixel-level arithmetic averaging. Detections are extracted as
points with local maxima identification with a kernel size K=2m and a confidence
threshold T=0.25. These values were manually chosen to balance over-prediction
on closed canopies and under-prediction on sparse areas or smaller trees, they
can also be optimized with a sweep on a validation set, if available [3].

3.2 Matching with Field Data

We consider a list of N detections and M field-measured trees on a local patch.
First, we conduct 1-to-1 matching by minimizing a patch-level cost matrix, where
pairwise assignment cost is the intercenter Euclidean distance:
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i =il i s = 52 < 4m
i = . (4)
00 otherwise,

with a threshold of 4m to ensure that matches stay realistic. Compared to an
exhaustive assignment to the closest candidate, 1-to-1 matching better handles
dense areas where the closest candidate might not be the best choice if consid-
ering a wider context. We will refer to matched detections as "verified", and
unmatched detections as "unverified".

After matching, we differentiate two situations:

A the parcel is monospecific, i.e. only has trees of the same species. In that
case, we assign the same species to all detections within the radius. Verified
and unverified detections are kept.

B the parcel has multiple species. In that case, we only assign species to verified
detections and keep them, and ignore others.

While verified detections can be considered as "ground truth", suitable for
training and validating classification models, unverified detections in monospe-
cific plots are not as reliable. We treat these cases as noisy labels, and use them
only for training.

3.3 Statistics
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Fig. 2: Our dataset has a variety of species with a typical imbalanced distribution. We
only plot species with more than 200 individuals.
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The final dataset contains 69180 individual trees, of which 20.4% were matched
with a field observation with a maximum distance of 4m, the remaining being
detected in a monospecific parcel and assigned the corresponding label. Of the
1518 parcels, 61.6% (935) are monospecific, the rest having multiple species.

The dataset contains 56 unique species belonging to 28 different genera. We
plot the species histogram in Figure [2]

3.4 Quality Control

We asked an expert in forestry to label a random selection of 48 parcels. We com-
pared the hand-labels with the field-measured tree positions at these parcels, and
with the ensemble model predictions, to assess A) if the detection model main-
tains its accuracy on the new areas we consider here, B) the level of agreement
between remote observations and field measures. We conduct one-to-one match-
ing to collect true positive, false positives, false negatives, and report the F1
score, the harmonic mean of precision and recall.

We indicate results in Table [I} We note a high agreement between manual
labels and model predictions, and a low agreement of the latter two with field
measures. Notably, field data reports a significantly lower count of trees overall.
This mismatch highlights the level of uncertainty on tree positions, due to incon-
sistencies between NFI standards (only measuring trees above a certain radius
and within a certain area, instrument and human errors) and photointerpreta-
tion from remote sensing data (only using the visible crown to identify trees,
data and model errors).

Most interestingly perhaps, we note that the model predictions agree more
with the field data than human labels do. In other words, the performance of
our ensemble deep model surpasses that of a human annotator, if we consider
the field data as close to being "ground truth". This encourages us to consider
model predictions as a good source of tree positions for mining species labels.

Table 1: Agreement between detections from aerial photography vs. manual labels
from photointerpretation vs field-reported tree positions.

Reference Matched Difference F1 Avg. distance
Field data Manual labels +1342 41.4 1.2m
Field data Predictions +1099 47.9 1.1m
Manual labels Predictions —243 76.2 0.6m

4 Experiments

We trained a simple ResNet34 classifier on our dataset. We conduct experiments
to assess the potential of automatically mining tree species from monospecific



Mining Field Data for Tree Species Recognition at Scale 7

Table 2: Species classification experiments. Progressively adding noisy and unlabeled
data enhances performance.

OA mloU AR
Only verified 40.3+2.5 12.9+1.6 24.84+4.1
+ unverified 44.4+1.5 16.8+1.5 31.2+2.9
+ 50k unlabeled 45.5+0.7 23.3+0.2 42.6+0.4
+ 500k unlabeled 54.9+1.2 29.7+1.2 54.8+2.4

plots. We report three metrics: overall accuracy (OA), class-averaged intersection
over union (mloU), and class-averaged recall (AR). While OA indicates how
well the model predicts species overall, class-averaged metrics remove the bias
towards frequent species.

We conduct three experiments (Table : training only on verified labels,
training on verified and unverified labels, and training on all labels + a volume
of unlabeled patches. For this last setup, we apply a recent semi-supervised
approach, deep label propagation [19], which builds a similarity graph between
labeled and unlabeled data points to extract pseudo-labels. We experiment with
50k (around 50% labeled data) and 500k (around 10% labeled data) additional
unlabeled patches that we randomly extracted from areas that did not contain
NFT parcels.

We note a significant and clear positive effect when adding first unverified
patches, then unlabeled patches. Class-averaged metrics in particular were in-
creased by a factor of 2 between a model trained only on verified patches and a
model trained with only 10% of labeled data, indicating that unlabeled patches
contribute to building more balanced models, that do not ignore less-represented
species.

5 Conclusion

We introduced a pipeline to automatically match field observations with predic-
tions on aerial photography from an ensemble of pretrained models for individual
tree detection and segmentation. Comparing model predictions with hand-labels,
we noted that the ensemble surpasses human performance, a strong signal for
using predictions at large scale. Importantly, the pretrained models were not
fine-tuned on our target area, making ensembling a promising strategy for gen-
eralizable tree detection.

Our experiments on the automatically generated dataset of tree species show
that a classifier is able to learn from this not-so-reliable data, and even benefits
from large volumes of unverified or unlabeled examples.

While forest inventory data can be unreliable and difficult to work with from
a remote sensing perspective, we show here that it is possible to harness the
sheer volume of data with modern deep learning methods and learn balanced
species classifiers. Note that this strategy can be effortlessly generalized to esti-
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mate biomass, height, health, and other attributes commonly collected in forest

inventories.
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