
POLO - Point-based, multi-class animal detection

Giacomo May1, Emanuele Dalsasso1 ,
Benjamin Kellenberger2 , and Devis Tuia1

1 EPFL, Switzerland (first.last@epfl.ch)
2 University College London, U.K. (b.kellenberger@ucl.ac.uk)

Abstract. Automated wildlife surveys based on drone imagery and ob-
ject detection technology are a powerful and increasingly popular tool
in conservation biology. Most detectors require training images with an-
notated bounding boxes, which are tedious, expensive, and not always
unambiguous to create. To reduce the annotation load associated with
this practice, we develop POLO, a multi-class object detection model
that can be trained entirely on point labels. POLO is based on simple,
yet effective modifications to the YOLOv8 architecture, including alter-
ations to the prediction process, training losses, and post-processing. We
test POLO on drone recordings of waterfowl containing up to multiple
thousands of individual birds in one image and compare it to a regu-
lar YOLOv8. Our experiments show that at the same annotation cost,
POLO achieves improved accuracy in counting animals in aerial imagery.

Keywords: Animal detection · Wildlife censuses · Annotation cost

1 Introduction

Frequent animal censuses are a key requirement for successful conservation man-
agement and become particularly important when dealing with endangered species.
Wildlife in vast and open landscapes can be surveyed efficiently using aerial im-
agery recorded either from airplanes or unmanned aerial vehicles (UAVs), with
the latter being used more and more thanks to the reduced operating costs
and safety risks [9, 13]. Given the large amounts of data collected during these
flights, machine learning approaches are often employed to count animals in the
images, allowing biologists to estimate the development of populations. For this
purpose, convolutional neural networks (CNNs) are among the most popular
techniques [4–6,10].
While CNNs hold the promise of high detection accuracy, this potential is limited
by the volume of labeled data available for model training [1]. Since the creation
of labeled data implies manual annotation, often to be provided in the form of
bounding boxes, accurate counting of animals from aerial imagery comes at a
significant annotation cost, which limits the scalability of deep learning-based
conservation efforts. To reduce these costs, bounding boxes can be automatically
created from point annotations, which can be obtained with higher speed and
are thus much cheaper to produce [7,14]. This approach simply consists of gener-
ating square boxes around the point annotations and using these pseudo-labels

https://orcid.org/0000-0001-7170-9015
https://orcid.org/0000-0002-2902-2014
https://orcid.org/0000-0003-0374-2459

2 G. May et al.

to train conventional object detection architectures. However, animals in aerial
images are regularly of very small size (i.e., a few pixels in length), partially
occluded, difficult to separate if standing close together, or distorted due to per-
spective and motion blur. All of these factors contribute to animal boundaries
being difficult to demarcate, hence significantly affecting the quality of automat-
ically generated boxes.
In the present study, we avoid these issues without raising the annotation cost
by developing an object detection framework that can be trained entirely on
point labels. We approach this task by modifying the YOLOv8 algorithm [8],
one of the most advanced and widely used bounding box detection models. The
proposed architecture is called POLO (Point-YOLO). We compare two different
loss functions to train it, and introduce a new metric to perform non-maximum-
suppression (NMS) on point predictions.
We test POLO on a challenging dataset, which involves counting five species
of waterfowl in drone images of the Izembek lagoon in Alaska. Moreover, we
compare POLO’s performance to that of a regular YOLOv8 trained on pseudo-
labels, and find that while the latter approach yields high counting accuracy,
results improve when using POLO.

2 Related Work

2.1 Point-based object detection and counting

Point labels represent a popular annotation type in the field of crowd counting,
where they are used to train density estimation models that take images as in-
put and output a heat map encoding the estimated density of people in every
pixel [2, 12, 19] – an approach motivated by the observation that conventional
detection algorithms struggle with scale variation (i.e., people in the background
appearing smaller than people close to the camera) and partial occlusion of in-
dividuals by other individuals.
In object detection on the other hand, the point format has been used as part
of mixed labeled sets, where a small set of bounding box annotations is com-
plemented by a larger set of point labels to train detection models to ouptut
bounding box predictions [3, 7, 18].

Our solution differs from the above methods, since we output point detections
(rather than density maps or bounding boxes) and do not use any bounding box
annotations for training. This makes for a simpler learning task than generating
bounding box outputs from point labels, and suffices for our purpose of counting
animals in drone imagery. The present work is most similar to the efforts of Song
et al . [16], who also develop a detection model that trains on and outputs point
labels. However, their architecture cannot distinguish between different classes,
making it unsuitable for animal censuses involving multiple species.

POLO - Point-based, multi-class animal detection 3

2.2 The YOLO algorithm

To identify objects, YOLOv8 employs a one-stage detection strategy that divides
images into a predefined number of grid cells. Each grid cell is then processed
on two separate branches, one predicting bounding boxes that enclose objects
lying within the cell, and the other predicting the class of said objects. Impor-
tantly, YOLOv8 does not directly regress bounding box coordinates, but samples
a probability distribution to obtain the most likely number of pixels by which
the four bounding box edges are offset from the center of grid cells.
The training objective of YOLOv8 consists of three loss terms: a binary cross-
entropy loss (LBCE) for the class predictions, an Intersection-over-Union loss
(LIoU) to learn the geometric prediction of bounding boxes, and a Distribution
Focal Loss (LDFL) [11] to optimize the probability distribution used for predict-
ing bounding box offsets. The overall loss value is then computed as a weighted
sum of these three components, where the class, IoU, and DFL loss are scaled
by factors 0.5, 7.5, and 1.5, respectively.

3 Method

To achieve compatibility with point labels, we apply the following modifications
to the YOLOv8 architecture:

1. Output dimensions: By default, the number of output channels in the final
convolutional layer of YOLOv8 is 4 · 16. These channels encode probabilities
of the different bounding box edges being offset by [0, 1, ..., 15] pixels from
the center of a grid cell.
We change the architecture to predict the x- and y- coordinates of the center
points of objects that lie within grid cells, using only two channels:

p̂x = σ(a1) · 2− 0.5 + cx (1)
p̂y = σ(a2) · 2− 0.5 + cy (2)

where p̂x and p̂y are the predicted coordinates, a1 and a2 are the activation
values of a grid cell in the first and second output channel, σ(·) is the sig-
moid function, and cx and cy are the coordinates of the grid cell’s top left
corner. This way, predicted values can range between -0.5 and 1.5, allowing
the model to locate objects that do not fit entirely into one cell. We borrow
this approach from YOLOv8’s predecessor, YOLOv5 [8], where it is used to
regress the center point of bounding boxes.

2. Loss function: Neither the IoU-, nor the DFL-loss term can be applied to
our point model. We consider the following alternatives:
(a) Average Hausdorff-Distance [15]:

LAH(P̂ , P) =
1

|P |

|P |∑
i=1

minp̂∈P̂ d(p̂,pi) +
1

|P̂ |

|P̂ |∑
j=1

minp∈P d(p̂j ,p) (3)

4 G. May et al.

where P̂ is the set of predicted points, P is the set of ground truth
locations, |·| denotes the cardinality, and d(·, ·) is the Euclidean distance.

(b) Mean Squared Error (MSE) [16]:

LMSE =
1

|P |

|P |∑
i=1

||pi − p̂i||22 (4)

Again, P denotes the set of ground truth locations and p̂i is the predic-
tion corresponding to ground truth pi.

3. Postprocessing: To remove redundant detections, we implement a varia-
tion of the traditional NMS algorithm. Specifically, we define the Distance-
over-Radius (DoR) metric, and use it to replace the IoU. Here, the DoR is
computed by dividing the distance of a predicted point to its ground truth
label by a radius value rc specified by the user for each object/animal class
in the dataset:

DoR =
d(p̂,p)

rc
(5)

with d(p̂,p) denoting the Euclidean distance between a predicted point and
the ground truth location. During NMS, low-confidence detections are re-
moved if their DoR to higher-confidence detections falls below a specified
threshold.

4 Experiments

4.1 Experimental Setup

Dataset We evaluate and test all models in this study on a publicly available set
of drone images [17] from the Izembek lagoon in Alaska hosted on the LILA BC
data repository. The dataset includes 9,267 images of waterfowl of size 8688 ×
5792 pixels, and a total of 521,270 pseudo-boxes for the classes “Brant goose”
(424,790 boxes), “Canada goose” (47,561 boxes), “Gull” (5,631 boxes), “Emperor
goose” (2,013 boxes), and “Other” (5,631 boxes). The data was divided into
a training (80%), validation (5%), and test set (15%). Images were split into
640×640 patches with 10% overlap, to match the input size expected by YOLOv8
and POLO. 95% of patches that did not contain animals were discarded. The
remaining 5% were used as negative samples to reduce false positive detections.
Bounding boxes that span multiple patches were clipped to the patch limits if
at least 15% of the area of the box lied within the patch in question.

Implementation Details Throughout experiments, we employ a batch size of
32 and set the training duration to 300 epochs, while activating YOLO’s early
stopping mechanism with a patience value of 50. Counting accuracy was assessed
by applying the trained models to our test set. There too, we split images into

https://lila.science
https://lila.science

POLO - Point-based, multi-class animal detection 5

640 × 640 patches with 10% overlap, but map the patch-level predictions back to
image-level after inference to obtain a global animal count for the entire image.
An additional round of NMS is applied after mapping patch predictions to the
image-level in order to remove redundancy in the patch overlap regions.

4.2 Loss functions comparison

In a first step we compare the counting accuracy achieved with POLO models
trained on the Hausdorff and MSE loss, respectively. We set a DoR threshold of
0.3 for post-processing during this initial comparison, and use the YOLOv8 loss
balancing scheme mentioned in Sec. 2.2; i.e., we assign the Hausdorff-/MSE-loss
a weight of 7.5, and scale the classification loss by 0.5. We use a 40 pixel radius
for all classes, except for the Gull category, where we set the radius to 30 pixels.
These values were obtained by manually measuring the length of animals in the
training images, and adding a buffer of 10-15 pixel to account for variations
in ground sampling distance between images, and in the appearance of birds.
For example, when in flight, animals will occupy more pixels compared to when
they are resting on the water surface due to being closer to the drone and their
wings being spread. Tab. 1 displays the mean absolute error (MAE) per image
obtained when training POLO with the Hausdorff/MSE loss function.

Brant Goose Other Gull Canada Goose Emperor Goose
POLO MSE 5.91 4.57 0.93 2.26 0.25
POLO Hausdorff 6.57 4.64 0.91 2.19 0.22

Table 1: MAE scores obtained with the MSE/Hausdorff loss function.

As can be seen, the Hausdorff model beats the MSE model in three out of
five categories. However, for the most abundant species of the dataset (Brant
goose), the MSE loss reduces the MAE considerably. We hence decided to use
the latter for all subsequent experiments.

4.3 Loss balancing

To optimize the balance between the MSE and classification loss terms, we intro-
duce a hyperparameter α ∈ [1, 9], based on the value range used for loss scaling in
YOLOv8. We then train a total of nine different models using the DoR threshold
and radii specified in Sec. 4.2, where the loss is composed as follows:

L = α · LMSE + (10− α) · LBCE (6)

Tab. 2 contains the MAE scores for different values of α. We find the model
trained with α = 1 to perform consistently well across classes: while it is never
the most accurate, it yields the second- or third-lowest MAE score in every cat-
egory. Consequently, we choose the model trained with α = 1 for the remaining
experiments.

6 G. May et al.

α Brant Goose Other Gull Canada Goose Emperor Goose
1 5.3 4.17 0.73 1.89 0.22
2 5.58 4.11 0.86 1.94 0.22
3 5.48 4.2 0.74 2.03 0.2
4 5.51 4.23 0.69 1.81 0.2
5 5.34 4.07 0.86 1.95 0.22
6 5.63 4.31 0.78 2.02 0.21
7 5.25 4.77 0.83 2.05 0.19
8 5.31 4.28 0.81 2.02 0.22
9 5.72 4.62 0.79 1.97 0.23

Table 2: MAE scores for varying loss weights. The first, second, and third best scores
are colored in green, blue, and orange, respectively.

4.4 Radius and DoR Threshold

Fig. 1: MAE scores achieved for the Brant goose class de-
pending on radius and DoR value.

We finally perform a
full grid search over
combinations of ra-
dius values and DoR
thresholds. We probe
DoR thresholds be-
tween [0.1, 1] and
multiply the radii de-
fined in Sec. 4.1 by
scaling factors in the
range of [0.25, 2].
Fig. 1 visualizes the
effect different radii
and DoR thresholds
have on the MAE
achieved for the Brant
goose class. As can be
seen, two strategies maximize counting accuracy: using intermediate values for
both, radius and DoR threshold, or pairing opposite extremes; i.e., combining
large radii with low DoR tresholds and vice versa. It should be noted though
that the MAE is affected less strongly when large radii are used with high DoR
thresholds, compared to the combination of small radii and low DoR values. We
observe similar behavior in the remaining classes, where a scaling factor of 1.25
and a DoR-threshold of 0.6 achieve top MAE scores across categories.

5 Results

The animal counts and MAE values obtained with YOLOv8 and POLO are
showcased in Tab. 3. Based on the above results, we use a POLO model trained
with the MSE loss function scaled by factor 1 in this experiment. We multiply

POLO - Point-based, multi-class animal detection 7

the radii mentioned in Sec. 4.2 by factor 1.25, and set the DoR threshold to 0.6.

Brant Goose Other Gull Canada Goose Emperor Goose
Count MAE Count MAE Count MAE Count MAE Count MAE

YOLOv8 68,732 5.86 6,256 3.78 1,251 1.05 7,113 1.98 213 0.26
POLO 67,501 4.51 6,436 4.08 961 0.69 6,923 1.87 149 0.22
Ground Truth 64,764 4,910 584 7,233 225

Table 3: Counting accuracy of YOLOv8 and POLO.

Overall, both models yield reasonable counts, but overestimate the abun-
dance of the classes “Brant Goose”, “Other”, and “Gull” is overestimated , while
under-detecting “Canada Goose” and “Emperor Goose”. Importantly, POLO
achieves a lower MAE in four out of five categories.
Qualitatively, both architectures struggle to separate animals in close proximity
of each other, and tend to mistake bright water structures for birds. Differences
lie mostly in the classes assigned to these false positive predictions (cf . Fig. 2).

Fig. 2: True- (columns 1 & 2) and false-positive (columns 3 & 4) detections obtained
with YOLOv8 and POLO (magenta = Brant Goose, turquoise = Other, yellow = Gull).

6 Conclusion

Our results show that YOLOv8 achieves surprisingly accurate animal counts
when trained on pseudo-labels. However, we manage to improve counting accu-
racy with POLO, and obtain consistently lower MAE scores across categories.
As this leads to more conservative estimates compared to YOLOv8, POLO ap-
pears less prone to false positive detections. The modifications proposed in this
work hence represent an improved way to minimize the annotation cost of con-
ventional object detection. Subsequent efforts will be directed towards assessing
the difference between POLO and YOLOv8 when hand-crafted bounding boxes
are used for training the latter. We further plan to study the behavior of POLO
under different data acquisition scenarios, such as flight altitude, camera angle,
etc.

References
1. Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O.,

Santamaría, J., Fadhel, M.A., Al-Amidie, M., Farhan, L.: Review of deep learning:

8 G. May et al.

concepts, cnn architectures, challenges, applications, future directions. Journal of
big Data 8, 1–74 (2021) 1

2. Boominathan, L., Kruthiventi, S.S., Babu, R.V.: Crowdnet: A deep convolutional
network for dense crowd counting. In: Proceedings of the 24th ACM international
conference on Multimedia. pp. 640–644 (2016) 2

3. Chen, L., Yang, T., Zhang, X., Zhang, W., Sun, J.: Points as queries: Weakly semi-
supervised object detection by points. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. pp. 8823–8832 (2021) 2

4. Delplanque, A., Foucher, S., Lejeune, P., Linchant, J., Théau, J.: Multispecies
detection and identification of african mammals in aerial imagery using convolu-
tional neural networks. Remote Sensing in Ecology and Conservation 8(2), 166–179
(2022) 1

5. Dujon, A.M., Ierodiaconou, D., Geeson, J.J., Arnould, J.P., Allan, B.M., Katselidis,
K.A., Schofield, G.: Machine learning to detect marine animals in uav imagery:
Effect of morphology, spacing, behaviour and habitat. Remote Sensing in Ecology
and Conservation 7(3), 341–354 (2021) 1

6. Eikelboom, J.A., Wind, J., van de Ven, E., Kenana, L.M., Schroder, B., de Knegt,
H.J., van Langevelde, F., Prins, H.H.: Improving the precision and accuracy of an-
imal population estimates with aerial image object detection. Methods in Ecology
and Evolution 10(11), 1875–1887 (2019) 1

7. Ge, Y., Zhou, Q., Wang, X., Shen, C., Wang, Z., Li, H.: Point-teaching: weakly
semi-supervised object detection with point annotations. In: Proceedings of the
AAAI Conference on Artificial Intelligence. vol. 37, pp. 667–675 (2023) 1, 2

8. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLO (Jan 2023), https://github.
com/ultralytics/ultralytics 2, 3

9. Kellenberger, B., Marcos, D., Tuia, D.: Detecting mammals in uav images: Best
practices to address a substantially imbalanced dataset with deep learning. Remote
sensing of environment 216, 139–153 (2018) 1

10. Kellenberger, B., Volpi, M., Tuia, D.: Fast animal detection in uav images using
convolutional neural networks. In: 2017 IEEE international geoscience and remote
sensing symposium (IGARSS). pp. 866–869. IEEE (2017) 1

11. Li, X., Lv, C., Wang, W., Li, G., Yang, L., Yang, J.: Generalized focal loss: Towards
efficient representation learning for dense object detection. IEEE transactions on
pattern analysis and machine intelligence 45(3), 3139–3153 (2022) 3

12. Li, Y., Zhang, X., Chen, D.: Csrnet: Dilated convolutional neural networks for
understanding the highly congested scenes. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 1091–1100 (2018) 2

13. Linchant, J., Lisein, J., Semeki, J., Lejeune, P., Vermeulen, C.: Are unmanned air-
craft systems (uas s) the future of wildlife monitoring? a review of accomplishments
and challenges. Mammal Review 45(4), 239–252 (2015) 1

14. Mullen Jr, J.F., Tanner, F.R., Sallee, P.A.: Comparing the effects of annotation
type on machine learning detection performance. In: Proceedings of the ieee/cvf
conference on computer vision and pattern recognition workshops. pp. 0–0 (2019)
1

15. Ribera, J., Guera, D., Chen, Y., Delp, E.J.: Locating objects without bounding
boxes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 6479–6489 (2019) 3

16. Song, Q., Wang, C., Jiang, Z., Wang, Y., Tai, Y., Wang, C., Li, J., Huang, F., Wu,
Y.: Rethinking counting and localization in crowds: A purely point-based frame-
work. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 3365–3374 (2021) 2, 4

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

POLO - Point-based, multi-class animal detection 9

17. Weiser, E.L., Flint, P.L., Marks, D.K.S., Brad, S.W., Heather, M.T., Sarah, J.F.,
Julian, B.: Counts of birds in aerial photos from fall waterfowl surveys, izembek
lagoon, alaska, 2017-2019 (2022) 4

18. Zhang, S., Yu, Z., Liu, L., Wang, X., Zhou, A., Chen, K.: Group r-cnn for weakly
semi-supervised object detection with points. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 9417–9426 (2022) 2

19. Zhao, Z., Li, H., Zhao, R., Wang, X.: Crossing-line crowd counting with two-phase
deep neural networks. In: Computer Vision–ECCV 2016: 14th European Confer-
ence, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII
14. pp. 712–726. Springer (2016) 2

	POLO - Point-based, multi-class animal detection

