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Abstract. Coral reefs are crucial for biodiversity and provide vital re-
sources for humankind. But despite such a central role, they are con-
fronted to increasing threats linked to climate change, pollution, and
local stressors. To ensure effective conservation, efficient and scalable
monitoring is key: this necessitates automated identification of benthic
classes and their states on a large scale through semantic segmentation.
However, segmentation of underwater videos is challenging, because of
visual similarities between benthic classes, underwater distortions and
limited available datasets, making it harder to create accurate and ro-
bust models. In this paper, we present a method for training a semantic
segmentation model on a small dataset of video frames of coral scenes,
by fine-tuning a large transformer model. Our approach uses transfer
learning on the Segment Anything Model (SAM), incorporating specific
training and prediction strategies. We benchmark our model against a
CNN for semantic segmentation as a baseline. Our results demonstrate a
substantial improvement in model performance, particularly for benthic
classes that often appear as small objects and rarer classes, highlight-
ing the potential of our approach in advancing coral reef mapping and
monitoring.

1 Introduction

In the face of rising temperatures and various other stressors affecting coral
ecosystems, coral monitoring is all the more important to help devise data-
driven conservation strategies. Current well-established methods used to monitor
corals range from divers photographing the seafloor to advanced multi spectral
satellite imaging [15]. The most common approach to monitor benthic cover
involves photo quadrats taken by divers, followed by expert analysis to assess
coral abundance and bleaching status, which are then extrapolated to larger ar-
eas [11]. This process is labour-intensive and challenging to scale due to the need
for expert evaluation. Computer vision has been applied to automate quadrat
annotation [3, 18], but its efficacy hinges greatly on controlled conditions, given
the complexities of underwater environments.

However, currently there are no automatic semantic segmentation systems
for benthic semantic segmentation from general purpose reef images, as most
systems are trained on domain-specific images such as photo quadrats [3, 5].

https://orcid.org/0009-0007-2994-5322
https://orcid.org/0000-0002-3876-1521
https://orcid.org/0000-0003-0374-2459


2 Sertic et al.

■ Unlabelled ■ Transect Line ■ Background
■ Fish ■ Sand ■ Rubble
■ Unknown Hard Substrate ■ Algae Covered Substrate ■ Dark
■ Branching Bleached ■ Branching Dead ■ Branching Alive
■ Stylophora Alive ■ Pocillopora Alive ■ Acropora Alive
■ Massive/Meandering Dead ■ Table Acropora Dead ■ Other Coral Bleached
■ Massive/Meandering Bleached ■ Other Coral Dead ■ Other Coral Alive
■ Massive/Meandering Alive ■ Table Acropora Alive ■ Sponge

Fig. 1: Example dataset images with their labels. The labels encompass 30
classes with an additional class for unlabeled pixels.

To address these limitations, [12] proposed a coral monitoring approach for 3D
mapping, integrating frame-by-frame semantic segmentation and learned Simul-
taneous Localization and Mapping (SLAM). This technique generates 3D point
clouds with RGB data and semantic class labels, offering scalability and efficiency
through video-based data acquisition. It streamlines benthic classification, elim-
inating the requirement for expert image analysis. This method’s effectiveness
relies on successful SLAM and a robust semantic segmentation algorithm.

In recent literature, most existing models are limited to deep learning ap-
proaches primarily relying on convolutional neural networks (CNNs) [8, 9]. Fol-
lowing the excellent performance of large scale transformers in other tasks, our
paper explores a large vision transformer, a modified version of Segment Any-
thing (SAM [10]) that we name SAMarine, for enhancing the semantic segmen-
tation model. Our model can then serve either as an improved building block
for [12], but also as a stand alone tool for semantic segmentation of coral reefs,
as it provides insight into the distribution of the main coral types as well as their
condition (whether they are bleached, dead, or alive).

A limiting factor in the research is the lack of large and densely annotated
datasets. Hence, there is a lack of well-trained transformer models and limited ap-
plication of transfer learning from large datasets within this domain. Challenges
also arise from imaging under water, creating blur, and lack of contrast due to
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color attenuation and scattering [1,2,13], which varies with depth, temperature,
salinity, the particles suspended in the water, and other factors. Moreover, corals
show high morphological plasticity, which can make it extremely challenging to
tell some corals apart [16].

We contribute by making a set of changes in the architecture and training
procedure deviating from a standard semantic segmentation setup, leading to
an mIoU improvement from 0.412 to 0.513 with respect to the original work
of [12]. This improvement is seen on a challenging dataset of coral reef images
with fine-grained semantic segmentation labels of benthic classes.

2 Dataset

The dataset used in this paper was collected from various coral reef sites in
the Red Sea in Israel, Jordan and Djibouti as part of the Transnational Red
Sea Center’s 1 expeditions. The segmentation dataset is comprised of annotated
video frames from a dataset videos gathered by a diver swimming between 1 and
4 meters above the reef following a transect line using a GoPro Hero 10 camera
at 1080×1920px. The dataset spans a diverse array of underwater environments,
ranging from water-dominated scenes to those teeming with diverse coral for-
mations, as illustrated by examples in Fig. 1. Representative video frames of
the environment were selected manually and annotated by coral experts with
polygons of 30 distinct classes, including one extra class dedicated to unlabeled
pixels. The inclusion of this class serves to handle complex scenes where class
attribution might be uncertain, while addressing challenging scenarios with dif-
ficult to outline class boundaries. These unlabeled pixels fill transitional spaces
between class boundaries in such cases. The full dataset consists of 986 training
images (61868 polygons) and 99 test images (7247 polygons).

The dataset has significant class imbalance both in the frequency of classes
as well as their apparent sizes. This is illustrated in Fig. 2 showing the relation
between the median number of pixels per polygon to the number of polygons,
where for certain classes the difference in the number of annotated polygons
as well as the average polygon size varies with over two orders of magnitude.
The rarity of some species, like seagrass, poses challenges for the model to learn
effectively, resulting in very poor scores for these classes. Consequently, in our
result analysis, we differentiate between the performance of common and rare
classes. Furthermore, the imbalance in size among certain classes, exemplified by
fish being at least one order of magnitude times smaller than all other classes,
impedes learning due to their restricted pixel representation, rendering them
more challenging to grasp.

1 http://trsc.org



4 Sertic et al.

103 104 105

102

103

104

rubble

transect line

dark

massive/meandering alive

branching alive

fish

background

branching dead

massive/meandering dead

algae covered substrate

human

sand

unknown hard substrate

transect tools

other coral alive

other coral dead

other animal

millepora

acropora alive
pocillopora alive

table acropora alive

stylophora alive
other coral bleached

sea urchin
branching bleached

table acropora dead
sponge massive/meandering bleached

trash

seagrass

Median Number of Pixels Per Polygon

N
um

be
r

of
P
ol

yg
on

s

Fig. 2: Class Distribution. Relation of median number of pixels per polygon to the
total number of polygons per class.

3 Method

3.1 SAMarine

Model Architecture. Our model, SAMarine (Fig. 3), is an adaptation of the
pre-trained Segment Anything Model (SAM) [10] to the domain of semantic seg-
mentation of corals. It is based on the architecture proposed by [20] for medical
semantic segmentation. For our specific semantic segmentation task, we aim at
classifying each pixel into one of the 30 benthic classes, deviating from the binary
foreground-background segmentation in SAM. To do so, we design SAMarine to
output 30 binary segmentation masks, one per benthic class. In these experi-
ments, we do not actively design prompts, and use the default prompt from the
original SAM.

Training. We use a hybrid loss function that combines cross-entropy loss
(LossCE) and dice loss (LossDice) [14], weighted by parameter λ as shown in
Eq. (1). This approach allows us to strike a balance between distribution-based
and geometry-based optimisation.

LossCombined = λ · LossCE + (1− λ) · LossDice (1)

Moreover, we perform a number of augmentations (center / random cropping
and resizing, rotation of up to 15◦, jittering, horizontal flips) and vary their
strength. To tackle the size of the pre-trained backbones, we use LoRa [7] and
identify the best rank through ablations.
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Fig. 3: SAMarine Architecture. Overview of our SAMarine approach. On the left
side, the input image undergoes a patch-based embedding process before being for-
warded to the transformer encoder. The resulting image embedding is then queried
by a default prompt embedding in the mask decoder. The mask decoder generates a
class-specific score mask, which leads to the output segmentation mask on the right
side of the figure. Illustration inspired by [20].

Inference. To handle the loss of resolution that would be necessary if we
fed an entire image (see next section Sec. 3.2), we feed the large input image
to SAMarine in smaller patches and then reconstruct the full resolution map,
where the softmax probabilities are averaged in the overlapping parts.

3.2 Baseline

The baseline method is a standard semantic segmentation setup. A DeeplabV3+
[4] model with a resnext50_32x4d backbone pre-trained on ImageNet [6], is
trained using cross-entropy loss, excluding the unlabelled class, with classes
weighted inversely to the square root of the pixel count to address class im-
balance. We use random resized crops, horizontal flips, rotations and colour
jitter as augmentations. For handling large images at inference, we resize the
input image from 1080× 1920px to 352× 608px, and then upsample the predic-
tion to the original size, as is standard practice in many semantic segmentation
setups [17,19].

4 Results

4.1 Implementation Details

We assess the baseline method using both the resizing and the patch-based pre-
diction (as in SAMarine) with a patch size of 1024. Subsequently, we evaluate
the SAMarine model, with the ‘Vit-H’ backbone with a LoRA rank of 128.
The model is assessed using patch-based prediction with single patches of size
512. Unless specified otherwise, λ = 1 (a pure cross-entropy loss) is used with
medium-strength augmentations.
To assess our models, we use mean Intersection over Union (mIoU) as the eval-
uation metric, considering the class imbalance. We categorise the results into
common and rare classes, focusing on the former as the latter exhibits high
volatility, making their outcomes less reliable.



6 Sertic et al.

4.2 Results

Results are shown in Tab. 1, where we observe an overall performance increase
for the baseline from the resizing to the patching approach (0.412 to 0.431),
mostly related to an improved performance in the Common classes (increase
from 0.587 to 0.632). This shows that for underwater coral scenes, due to the
abundance of details, the loss of resolution due to the resizing approach leads to
a loss in performance.

Method mIoU
Overall Common Rare

Baseline (Resizing) 0.412 0.587 0.271
Baseline (Patching) 0.431 0.632 0.281
SAMarine (Patching, λ = 1) 0.492 0.685 0.337
+ Balanced combined loss (λ = 0.5) 0.494 0.688 0.336
+ Stronger augmentations 0.513 0.693 0.369

Table 1: Numerical comparison between our SAMarine and the DeepLabV3+ baseline.

Most importantly, there is a significant performance leap observed from the
baseline to our proposed SAMarine, visible in both rare and common classes.
Our experiments revealed that employing a balanced combined loss with λ =
0.5, alongside more severe data augmentation strategies, resulted in improved
performance, leading to an overall increase from 0.431 (baseline) to 0.492 (for the
base SAmarine) and 0.513 (for the final model). The common classes enjoy an
improvement of 6%, while the rare classes of 8%. The increased performance for
smaller classes is attributed partly to the use of patch-based prediction, which
preserves resolution and maintains accuracy in predicting these compared to
resized prediction method. Additionally, the overall performance boost across
all classes could stem from the efficacy of the transformer architecture employed
or the benefits of transfer learning from pre-training on a large segmentation
dataset.

Ablation studies about the different model architectures and the hyper-
parameter λ are reported in Fig. 4. As illustrated in Fig. 4a, superior performance
was attained using the larger ‘Vit-H’ backbone compared to ‘Vit-B’, along with
a larger rank of 128. Additionally, in Fig. 4b, a λ = 0.5 yielded the best results,
contrasting sharply with the inferior performance observed when using only the
dice loss (λ = 0).

The visual analysis in Fig. 5 reveals insights into model performance on small
classes. Compared to the baseline resizing approach, the patch-based method
shows a marked improvement in predicting fish instances. Notably, the SAMa-
rine model surpasses others by predicting more small fish instances with greater
boundary delineation accuracy. This underscores SAMarine’s effectiveness in
capturing fine-grained details.
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(a) (b)

Fig. 4: Ablation Analysis. Figure (a) illustrates the ablations conducted to deter-
mine the best backbone architecture for SAMarine and the best rank, found to be using
‘Vit-H’ and a LoRA rank of 128. Figure (b) shows the best value for the loss function
hyper-parameter λ as 0.5.

(a) Label (b) Baseline (Resiz.) (c) Baseline (Patch.) (d) SAMarine

Fig. 5: Qualitative Analysis. Example predictions using various methods. The fish
class, highlighted in yellow, demonstrates superior performance and detail capture with
the SAMarine approach.

5 Conclusion

We present a visual transformer-based model for automatic semantic segmen-
tation of benthic classes in reef scenes on a dataset of expert-annotated video
frames. This methodology incorporates transfer learning from a large transformer
model (Segment Anything), strong augmentations, a combined loss function and
patch-based prediction. Our model SAMarine outperforms the baseline, particu-
larly in smaller classes, and is able to accurately predict boundaries around these.
This is significant, as there are a lot of small benthic classes, which are challeng-
ing to discern in these unprocessed large underwater scenes. These findings also
highlight the need for larger datasets of densely labeled images of benthic habi-
tats in coral reef scenes, with a special focus on rare or naturally small organ-
isms. Overall, improved performance in automatic semantic segmentation marks
a solid step toward implementing coral monitoring at larger scale.
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