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Abstract. Species distribution models (SDMs) aim to predict the dis-
tribution of species by relating occurrence data with environmental vari-
ables. Recent applications of deep learning to SDMs have enabled new
avenues, specifically the inclusion of spatial data (environmental rasters,
satellite images) as model predictors, allowing the model to consider the
spatial context around each species’ observations. However, the appro-
priate spatial extent of the images is not straightforward to determine
and may affect the performance of the model, as scale is recognized as
an important factor in SDMs. We develop a modular structure for SDMs
that allows us to test the effect of scale in both single- and multi-scale
settings. Furthermore, our model enables different scales to be considered
for different modalities, using a late fusion approach. Results on the Ge-
oLifeCLEF 2023 benchmark indicate that considering multimodal data
and learning multi-scale representations leads to more accurate models.

1 Introduction

In the face of the current biodiversity crisis, biodiversity models informed by
ever-growing data are crucial to support conservation efforts [23]. In particular,
information about the suitability of species in areas where few observations are
recorded enables robust decision-making [15]. Such information is obtained from
species distribution models (SDMs), which relate species occurrence data with
environmental variables through statistical methods [1, 12,26].

With the increasing availability of species occurrence data, notably through
crowd-sourcing [17,28], the use of deep learning (DL) has recently been explored
in SDMs [4,25,29]. DL models are of particular interest thanks to their flexibility
in terms of architecture and input data types, their scalability, and their ability
to model the distributions of many species with a single model [5, 7, 13,31].

While most SDM approaches use point values of environmental variables as
predictors (i.e. tabular data), DL facilitates the integration of geospatial in-
formation, which allows the model to consider the spatial context surround-
ing each species observation. Recent works have used convolutional neural net-
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works (CNNs) to integrate patches extracted from rasters of environmental vari-
ables [4,8], satellite images [10,13], or both [25]. However, the size of the image
patches considered by the model is often not justified. Studies on non-DL SDMs
have shown that scale affects model performance and that the appropriate scale
may depend on the species or the type of environment [14, 19, 21]. Yet, when
handling tabular data, these effects are essentially linked to the resolution of the
predictors. To the best of our knowledge, no study has focused on the effect of
spatial extent5 of the image patches on the performance of DL-SDMs.

Furthermore, little work has gone into considering spatial data with different
resolutions in multimodal DL-SDMs. One study used the same patch size for all
images, treating them as a single stack but resulting in different spatial extents
for each data source [8]. Others have aligned the resolutions of the different
images in pre-processing, even though this leads to unnecessarily large models for
coarser grain images [25]. Finally, another study used satellite images alongside
coarser bioclimatic data considered as tabular data, hence not considering the
spatial context for the latter modality [10].

In this study, we analyze the effects of scale in a modular structure for SDMs
based on CNNs. Inspired by works in multi-scale modeling [6, 24] and multi-
modal modeling with late fusion [10, 22], we design a model that can extract
features at multiple scales from a single feature map and from multiple modal-
ities with different resolutions. Our architecture enables each modality to be
considered at its native resolution and at different scales. Using the GeoLife-
CLEF 2023 (GLC23) benchmark [3], we investigate the effect of spatial extent
on model performance in both single- and multi-scale settings, as well as uni-
and bi-modal models. Our results indicate superior performance of multi-scale,
multimodal approaches. Code to replicate our models can be found on GitHub.

2 Methods

Species data The GLC23 dataset [3] contains two types of georeferenced plant
species observation data. It includes 5 million presence-only (PO) observations
across Europe. This type of data consists of opportunistic observations in which
the non-observation of a species does not confirm its absence. It is widely avail-
able but is subject to many biases [9]. Additionally, presence-absence (PA) data
is available for 26k sites in France and Great Britain. PA data is more difficult
to obtain as it reflects exhaustive sampling with confirmed species absences. It
represents species distribution more accurately but is often not available [11].
To reflect the reality of available data for most species, we train our models on
PO data and validate them with PA data. In the GLC23 challenge, all teams
used PA data for training [2], thus our results are not comparable to those of
the leaderboard. As only part of the PA data is openly available in GLC23, we
use 7, 438 PA sites for validation. The labels for the remaining 22, 404 sites are
kept secret for evaluation through the GLC23 Kaggle page. We use this second
5 We use scale or spatial extent to refer to the size of image patches considered by the

model (i.e. its receptive field), and resolution to refer to the size of the pixels.

https://github.com/ninavantiel/multi_scale_SDMs
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dataset as a test set, even though it only allows us to report the evaluation
metric used by the challenge. For training, we keep the PO occurrences for the
2, 173 species in the validation set and merge occurrences recorded at the same
location and date, amounting to 2, 856, 818 training samples.

Model predictors We use two modalities among those included in GLC23
dataset [3]: 19 bioclimatic rasters describing temperature and precipitation at
a 30-arc seconds resolution (≈ 600 m at 50◦ N, the median latitude of occur-
rence records) [18] and images from the Sentinel-2 satellite, providing RGB and
a near-infrared (NIR) bands at a 10-meter resolution. All input data is normal-
ized by subtracting the mean and dividing by the standard deviation. From the
bioclimatic rasters, patches of various sizes between 1× 1 and 25× 25 pixels are
extracted around species occurrence records, corresponding to a ground footprint
from 0.6km× 0.6km = 0.36km2, up to 15km× 15km = 225km2. For the satellite
data, the dataset provides patches of 128×128 pixels, centered around the species
occurrence records. We extract patches with sizes of 25×25, 59×59, and 115×115
pixels, which correspond to a ground footprint of 0.25km × 0.25km = 0.06km2,
0.59km×0.59km = 0.35km2, and 1.15km×1.15km = 1.33km2, respectively. Our
models take as input image patches with the size required for the largest spatial
extent considered for each modality.

Model We propose a model structured in three parts: (1) a common encoder
for all scales, (2) a spatial module that can have one or multiple branches for
single- or multi-scale models, and (3) a linear classification layer with the same
number of output neurons as species, 2, 174 in our case, that is applied to the
concatenated outputs of the previous module (Fig. 1a,b). The sigmoid function
is applied to the output to obtain predictions between 0 and 1. When considering
multiple modalities, each one is encoded separately and the spatial module is
adapted to the resolution and the scales to be considered for each modality. We
use late-fusion and concatenate the 1024-dimensional feature vectors output by
each branch of the spatial modules before the final classification layer (Fig. 1c).
Late-fusion has been shown to work well in single-scale multimodal SDMs [10].
Our approach, where modality-specific streams are only fused at the end, allows
us to consider each modality at its native resolution and at different scales.

The encoder for bioclimatic variables is composed of four convolutional layers
with a kernel size of 1, keeping the encoder’s receptive field at 1 pixel, or 0.6km×
0.6km. Between each convolution, batch normalization and ReLU are applied.
The receptive field of 1 allows the downstream spatial module to consider a small
number of pixels as spatial extent, which is pertinent with the coarse resolution of
30-arc seconds. The satellite image encoder consists of nine convolutional layers,
corresponding to the first layers up to the second residual block of a ResNet
model [16], resulting in a receptive field of 25× 25 pixels or 0.25km × 0.25km.

The spatial module may consist of one or multiple branches, where the num-
ber of branches corresponds to the number of scales taken into account. Each
branch consists of a series of convolutional and max pooling layers, after which
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Fig. 1: Example of architectures with our modular structure for SDMs. a. Single-scale,
unimodal model architecture for bioclimatic variables at scale (5 × 5). b. Multi-scale
unimodal model architecture for bioclimatic variables at scales (1 × 1), (5 × 5) and
(9× 9). c. Multi-scale multimodal model architecture for bioclimatic variables at scale
(1× 1), and Sentinel-2 satellite images at scales (25× 25), (59× 59) and (115× 115).
The receptive fields after the encoders for bioclimatic variables and satellite image are
1× 1 and 25× 25 pixels, respectively.

the central pixel of the tensor is extracted to obtain a vector of length 512. The
receptive field of the central pixel corresponds to the extent considered by that
branch of the spatial module. Finally, a linear layer with 1, 024 outputs and
ReLU are applied to each vector.

We use a weighted loss function for multi-label classification for SDMs [29],
which was shown to perform well on the GLC23 dataset [30]. We consider the
records of other species as negatives and do not sample additional pseudo-
absences, to avoid the costly operation of downloading new satellite images on
the fly. We use a stochastic gradient descent optimizer with a learning rate of
0.01 and weight decay of 0.0001. All models are trained end-to-end for 30 epochs
with a batch size of 256 on NVIDIA A100 with 80GB video memory.

Evaluation We evaluate our models on the validation set with the area under
the receiver operating characteristic curve (AUC). AUC is widely used in SDMs
and measures how well the model discriminates presence from absence sites for
each species [27]. We consider the median AUC across species. Additionally,
we compute the metric used for the GLC23 challenge [2], the micro-F1 score,
on the validation and test sets. This metric measures the overlap between the
predicted and actual set of species, averaged over the sites. While AUC can
be computed directly on the probabilistic output of our models, the F1 requires
binary predictions. Although species- or model-specific binarization schemes may
be used, we chose a fixed binarization threshold of 0.5 to ensure comparability
among models and avoid overfitting on the validation data.
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Table 1: Model performance and training time for unimodal models considering vari-
ous scales in single- and multi-scale settings. The median species AUC is computed on
the validation data. The micro-F1 score is computed on the validation and test data.
The best and second-best scores per column are in bold and underlined, respectively.
Scales are indicated in pixels and performance metrics are in %.

Validation Test
Scales AUC F1 F1 Runtime

1 86.91 3.05 2.37 1.5 hrs
5 85.69 3.16 2.37 2.6 hrs
9 83.63 2.95 2.36 2.0 hrs
17 83.59 2.30 2.08 3.6 hrs
25 83.65 1.98 1.58 9.7 hrs
1, 5 85.73 3.13 2.39 2.8 hrs
1, 5, 9 85.37 3.14 2.30 2.9 hrs
1, 5, 9, 17 86.28 3.05 2.35 6.8 hrs
1, 5, 9, 17, 25 85.12 3.13 2.28 17.9 hrs

(a) Bioclimatic variables

Validation Test
Scales AUC F1 F1 Runtime

25 80.41 2.76 1.69 3.9 hrs
59 81.38 2.88 1.98 8.0 hrs
115 80.85 2.98 2.00 28.7 hrs
25, 59 80.67 3.19 2.15 9.6 hrs
25, 59, 115 81.80 3.53 2.25 38.6 hrs

(b) Satellite images

3 Results

Unimodal models First, we train models with only bioclimatic variables or
satellite images as predictors. Table 1 shows the performance and training time
of single- and multi-scale models with different spatial extents.

Table 1a shows that, when considering only bioclimatic variables, small spa-
tial extents obtain the best performance. While the performance decreases with
increasing spatial extent for single-scale models, the different multi-scale models
recover the performance of the best single-scale models, albeit with longer train-
ing time. We note that the 1× 1 scale obtains the best AUC, and the 5× 5 scale
yields the best F1 score on the validation set. Interestingly, the combination of
these scales slightly outperforms both single-scale models on the test set, indi-
cating the marginal advantage of a multi-scale approach for this modality. The
differences in performance among these models are relatively small. This may
be explained by the high spatial autocorrelation in bioclimatic variables, leading
to limited additional information for medium-sized spatial contexts. However,
considering large spatial extents can be disadvantageous, indicating that, be-
yond a certain extent, spatial context is not informative and may even introduce
spurious correlations for modeling the distributions of plant species.

In contrast, the results for models with satellite images in Table 1b indicate
that taking multiple scales into account leads to better performance. While the
F1 scores generally increase with model complexity, the AUC does not consis-
tently follow this trend, with no clear relationship between spatial extent and
performance among the single-scale models. This result suggests a larger vari-
ability of which scales are most informative, possibly due to the much higher
resolution and semantic content of satellite images compared to bioclimatic vari-
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Fig. 2: Performance of bimodal and corresponding unimodal models, quantified by
their validation median AUC, and test micro-F1 scores.

ables. We speculate that different scales may be informative for different species
or sites and that the multi-scale architecture may learn which spatial extents are
relevant, leading to its superior performance.

Multimodal models We compare the performance of bimodal models to their
unimodal counterparts (Fig. 2). We consider the best scale or combination of
scales for each modality. Concerning the AUC, we find that the models with bio-
climatic variables outperform those with satellite images, and combining both
modalities leads to further improvement. Regarding the site-wise performance,
quantified by the F1 scores, we find that the unimodal models with multiple
scales for satellite images outperform the models with bioclimatic variables on
the validation set, but the opposite is observed on the test set. The bimodal
models perform better than both of their unimodal counterparts, in particular
with multi-scale feature extraction for the satellite imagery. Furthermore, the
inclusion of multiple scales for both bioclimatic variables and satellite images
leads to the best F1 score on the test set. These results confirm the advantage
of combining modalities describing the environmental conditions with satellite
images [10]. Furthermore, they indicate that multi-scale representations for both
modalities lead to better species community predictions. However, such complex
models require 20-fold longer training times than the simplest unimodal mod-
els. One may consider whether the performance increase is worth the carbon
emissions associated with training these models, estimated at 6.91 and 0.35 kg,
respectively [20].

Species- and site-level differences in performance While the differences
in performance are sometimes relatively small when aggregated, some species
or sites have large differences among models. To illustrate this, we compare
two models with bioclimatic variables as predictors and two bimodal models
(Fig. 3). These pairs of models have differences in median AUC of 1.2% and
0.7%, respectively, and, accordingly, the vast majority of species have a small
difference in performance: 90% of species have a difference in AUC of less than
11% between the two pairs of models.The species with larger differences have
few records in the validation data (Fig. 3a,d), but no clear trend can be found
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Fig. 3: Difference in median AUC (∆AUC) and micro-F1 (∆F1) between two unimodal
and two bimodal models. Positive ∆ values indicate that models [bioclim 1,5] or [bioclim
1, 5 + sat 25, 59, 115] outperform models [bioclim 1] or [bioclim 1 + sat 25, 59, 115],
respectively, and vice-versa for negative values. a, b, d, e. ∆AUC values plotted against
the number of occurrences in the training data (nb train) and the validation data (nb
val) for 2, 173 species. Colors indicate point density, with higher densities in yellow. c,
f. 7, 348 validation sites plotted on maps and colored by ∆F1.

with the number of records in the training data (Fig. 3b,e). While this may be
explained by the sensitivity of AUC to small sample sizes [27], our results suggest
that rare species may be more sensitive to the scale of the predictors. Mapping
the differences in the validation F1 score per site reveals geographical clusters
(Fig. 3c,f). These clusters are more locally marked for bioclimatic variables,
with a clear preference for a certain model in some regions, despite a median
difference in F1 of 0.03%. For the bimodal models, considering a single scale
for bioclimatic variables generally leads to better site-wise performance, with a
median difference in F1 of −0.23%. However, this difference is less marked in
certain regions, such as the north and west of France. These qualitative results
indicate that multi-scale models may be more informative for some species or in
some regions, characterized by a specific type of ecosystem. We leave to future
work the further investigation of these relationships.

4 Conclusion

In this study, we develop a modular structure for SDMs and explore the effect of
the scale of spatial predictor variables on the GLC23 dataset for European plant
species distributions. We find that small scales are most appropriate when consid-
ering bioclimatic variables. When using satellite images, our multi-scale approach
showed a clear benefit in performance. Combining the best architectures for each
modality with a late fusion scheme leads to further increases in performance, in-
dicating the complementarity of both modalities. Overall, our multi-scale and
multimodal model achieved the best performances for both species-wise and site-
wise evaluation. Our results suggest that the most informative scales may depend
on the species or site. Future work may explore these relationships further, and
investigate scale-dependencies in other species groups beyond plants.



8 N. van Tiel et al.

References

1. Beery, S., Cole, E., Parker, J., Perona, P., Winner, K.: Species distribution model-
ing for machine learning practitioners: A review. In: Proceedings of the 4th ACM
SIGCAS Conference on Computing and Sustainable Societies. pp. 329–348 (2021)

2. Botella, C., Deneu, B., Gonzalez, D.M., Servajean, M., Larcher, T., Leblanc, C.,
Estopinan, J., Bonnet, P., Joly, A.: Overview of geolifeclef 2023: Species compo-
sition prediction with high spatial resolution at continental scale using remote
sensing. In: CLEF 2023: Conference and Labs of the Evaluation Forum (2023)

3. Botella, C., Deneu, B., Marcos, D., Servajean, M., Estopinan, J., Larcher, T.,
Leblanc, C., Bonnet, P., Joly, A.: The geolifeclef 2023 dataset to evaluate plant
species distribution models at high spatial resolution across europe (2023)

4. Botella, C., Joly, A., Bonnet, P., Monestiez, P., Munoz, F.: A deep learning ap-
proach to species distribution modelling. Multimedia Tools and Applications for
Environmental & Biodiversity Informatics pp. 169–199 (2018)

5. Brun, P., Karger, D.N., Zurell, D., Descombes, P., de Witte, L.C., de Lutio, R.,
Wegner, J.D., Zimmermann, N.E.: Multispecies deep learning using citizen science
data produces more informative plant community models. Nature Communications
15(1), 4421 (2024)

6. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Se-
mantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE transactions on pattern analysis and machine intelli-
gence 40(4), 834–848 (2017)

7. Cole, E., Van Horn, G., Lange, C., Shepard, A., Leary, P., Perona, P., Loarie,
S., Mac Aodha, O.: Spatial implicit neural representations for global-scale species
mapping. In: International Conference on Machine Learning. pp. 6320–6342. PMLR
(2023)

8. Deneu, B., Servajean, M., Bonnet, P., Botella, C., Munoz, F., Joly, A.: Convo-
lutional neural networks improve species distribution modelling by capturing the
spatial structure of the environment. PLoS computational biology 17(4), e1008856
(2021)

9. Di Cecco, G.J., Barve, V., Belitz, M.W., Stucky, B.J., Guralnick, R.P., Hurlbert,
A.H.: Observing the observers: how participants contribute data to inaturalist and
implications for biodiversity science. BioScience 71(11), 1179–1188 (2021)

10. Dollinger, J., Brun, P., Sainte Fare Garnot, V., Wegner, J.D.: Sat-sinr: High-
resolution species distribution models through satellite imagery. ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Information Sciences 10, 41–48
(2024)

11. Elith, J., Graham, C., Valavi, R., Abegg, M., Bruce, C., Ferrier, S., Ford, A.,
Guisan, A., Hijmans, R.J., Huettmann, F., et al.: Presence-only and presence-
absence data for comparing species distribution modeling methods. Biodiversity
informatics 15(2), 69–80 (2020)

12. Elith, J., Leathwick, J.R.: Species distribution models: ecological explanation and
prediction across space and time. Annual review of ecology, evolution, and system-
atics 40(1), 677–697 (2009)

13. Estopinan, J., Servajean, M., Bonnet, P., Munoz, F., Joly, A.: Deep species distri-
bution modeling from sentinel-2 image time-series: a global scale analysis on the
orchid family. Frontiers in Plant Science 13, 839327 (2022)

14. Guisan, A., Thuiller, W.: Predicting species distribution: offering more than simple
habitat models. Ecology letters 8(9), 993–1009 (2005)



Multi-Scale and Multimodal Species Distribution Modeling 9

15. Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R.,
Tulloch, A.I., Regan, T.J., Brotons, L., McDonald-Madden, E., Mantyka-Pringle,
C., et al.: Predicting species distributions for conservation decisions. Ecology letters
16(12), 1424–1435 (2013)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

17. Joly, A., Goëau, H., Champ, J., Dufour-Kowalski, S., Müller, H., Bonnet, P.:
Crowdsourcing biodiversity monitoring: how sharing your photo stream can sustain
our planet. In: Proceedings of the 24th ACM international conference on Multime-
dia. pp. 958–967 (2016)

18. Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W.,
Zimmermann, N.E., Linder, H.P., Kessler, M.: Climatologies at high resolution for
the earth’s land surface areas. Scientific data 4(1), 1–20 (2017)

19. König, C., Wüest, R.O., Graham, C.H., Karger, D.N., Sattler, T., Zimmermann,
N.E., Zurell, D.: Scale dependency of joint species distribution models challenges
interpretation of biotic interactions. Journal of Biogeography 48(7), 1541–1551
(2021)

20. Lacoste, A., Luccioni, A., Schmidt, V., Dandres, T.: Quantifying the carbon emis-
sions of machine learning. arXiv preprint arXiv:1910.09700 (2019)

21. Lu, M., Jetz, W.: Scale-sensitivity in the measurement and interpretation of envi-
ronmental niches. Trends in Ecology & Evolution 38(6), 554–567 (2023)

22. Mac Aodha, O., Cole, E., Perona, P.: Presence-only geographical priors for fine-
grained image classification. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision. pp. 9596–9606 (2019)

23. Pollock, L.J., O’connor, L.M., Mokany, K., Rosauer, D.F., Talluto, M.V., Thuiller,
W.: Protecting biodiversity (in all its complexity): new models and methods.
Trends in Ecology & Evolution 35(12), 1119–1128 (2020)

24. Reed, C.J., Gupta, R., Li, S., Brockman, S., Funk, C., Clipp, B., Keutzer, K.,
Candido, S., Uyttendaele, M., Darrell, T.: Scale-mae: A scale-aware masked au-
toencoder for multiscale geospatial representation learning. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 4088–4099 (2023)

25. Teng, M., Elmustafa, A., Akera, B., Bengio, Y., Radi, H., Larochelle, H., Rolnick,
D.: Satbird: a dataset for bird species distribution modeling using remote sensing
and citizen science data. Advances in Neural Information Processing Systems 36
(2024)

26. van Tiel, N., Lyu, L., Fopp, F., Brun, P., van der Hoogen, J., Karger, D.N., Casadei,
C.M., Tuia., D., Zimmermann, N.E., Crowther, T., Pellissier, L.: Regional unique-
ness of tree species composition and response to forest loss and climate change.
Nature Communications 15(4375) (2024)

27. Valavi, R., Guillera-Arroita, G., Lahoz-Monfort, J.J., Elith, J.: Predictive per-
formance of presence-only species distribution models: a benchmark study with
reproducible code. Ecological Monographs 92(1), e01486 (2022)

28. Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., Sun, C., Shepard, A., Adam,
H., Perona, P., Belongie, S.: The inaturalist species classification and detection
dataset. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 8769–8778 (2018)

29. Zbinden, R., van Tiel, N., Kellenberger, B., Hughes, L., Tuia, D.: On the selection
and effectiveness of pseudo-absences for species distribution modeling with deep
learning. arXiv preprint arXiv:2401.02989 (2024)



10 N. van Tiel et al.

30. Zbinden, R., Van Tiel, N., Rußwurm, M., Tuia, D.: Imbalance-aware presence-only
loss function for species distribution modeling. arXiv preprint arXiv:2403.07472
(2024)

31. Zbinden, R., Van Tiel, N.M.A., Kellenberger, B.A., Hughes, L., Tuia, D.: Exploring
neural networks and their potential for species distribution modeling. In: 11th
International Conference on Learning Representations (ICLR) Workshops (2023)


	Multi-Scale and Multimodal Species Distribution Modeling

