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Abstract. We propose a new method – WildFusion – for individual
identification of a broad range of animal species. The method fuses deep
scores (e.g., MegaDescriptor or DINOv2) and local matching similarity
(e.g., LoFTR and LightGlue) to identify individual animals. The global
and local information fusion is facilitated by similarity score calibration.
In a zero-shot setting, relying on local similarity score only, WildFusion
achieved mean accuracy, measured on 17 datasets, of 76.2%. This is bet-
ter than the state-of-the-art model, MegaDescriptor-L, whose training
set included 15 of the 17 datasets. If a dataset-specific calibration is ap-
plied, mean accuracy increases by 2.3% percentage points. WildFusion,
with both local and global similarity scores, outperforms the state-of-
the-art significantly – mean accuracy reached 84.0%, an increase of 8.5
percentage points; the mean relative error drops by 35%. We make the
code and pre-trained models publicly available5, enabling immediate use
in ecology and conservation.

1 Introduction

Identifying individual animals is essential in various domains of wildlife research.
It help us understand the complexities of species dynamics [46,62], which is nec-
essary for developing efficient conservation strategies. Besides, it can improve the
accuracy of population density estimation, which is important in problems like
disease monitoring and control [45], the role of the animal in the ecosystem [51],
monitoring invasive species [11] and measuring the involvement of humans in the
animal’s habitat and ecological restoration [8]. Accurate identification requires
domain knowledge and is extremely time-consuming due to the need for manual
data processing. Therefore, considerable progress has been made in the develop-
ment of methods for automating this process. Even though identifying animal
individuals from images is challenging, machine learning and computer vision
methods applied to species with unique patterns already enhance ecological re-
search [67]. The automation of animal re-identification is typically based on (i)
deep learning, (ii) local feature matching, or (iii) species-specific methods.
5 https://github.com/WildlifeDatasets/wildlife-tools
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Fig. 1: Calibrated similarity fusion. Fusing local (in the [0,R] range) and global
matching scores (e.g., cosine similarity) is not possible without calibration. By calibrat-
ing the outputs of any local and global matcher, we can easily fuse them and achieve
better performance. In terms of accuracy and evaluated on 17 datasets, we increased
the performance by 8.5% on average and reduced relative error by 35%.

The deep learning-based approaches [10,16,23,34,40,61] use either a standard
classification-like approach or metric learning. Even though those approaches
perform well, the models need relatively large annotated datasets, and fine-
tuning requires considerable computational resources. On the other hand, meth-
ods based on local descriptors (e.g., SIFT [39], SuperPoint [18]) can be used
without fine-tuning. [6, 22, 47, 50]. Indeed, the overall accuracy of matching lo-
cal descriptors does not achieve a performance of deep learning methods [13],
but those approaches are still very popular due to the existence of open-source
tools (e.g., HotSpoter, WildMe) that are based on local descriptors. Addition-
ally, matching requires a pairwise comparison between all query and database
samples. As the identity database grows in size, the computational time quickly
becomes unfeasible; therefore, local feature matching remains a viable option
only for moderately sized datasets. The species-specific methods are usually tai-
lored to suit species without any visual characteristics [5, 7, 28, 31, 65]. Exist-
ing methods focus, for example, on the shape of an elephant’s ear, the facial
characteristics of primates, or the fluke shape of whales. However, due to their
idiosyncratic nature, these methods are difficult to transfer to other species.

In light of that, we propose WildFusion, a new state-of-the-art approach to
zero-shot animal re-identification. It fuses calibrated deep similarity functions
(i.e., MegaDescriptor and/or DINOv2 feature similarity) and local matching
scores (i.e., number of matches from descriptors such as LoFTR and LightGlue)
to select an identity from a database. For reference, see the illustration in Fig-
ure 1. With this straightforward approach, WildFusion significantly outperforms
the current state-of-the-art without domain adaptation or fine-tuning.
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The main contributions of this paper are:
– A new ensembling framework (WildFusion) that allows a combination of

deep- and local-feature matching scores.
– A state-of-the-art performance on a set of animal identification problems,

outperforming current methods by 8.5% on average; measured on 17 datasets.
– Comprehensive evaluation of selected state-of-the-art deep-learning and local

feature-matching methods for image-matching and animal re-identification.
– Showing that WildFusion works without the need for fine-tuning and pro-

vides state-of-the-art performance out of the box, even in a zero-shot setting.

2 Related work

Local feature matching methods: Early work on animal re-identification
used hand-crafted features such as cheetah’s spots [31] or zebra’s stripes [33].
Since these approaches suffer from poor performance and are non-transferable
to other species, methods extracting local patterns such as SIFT [39] or ORB [52]
were soon widely used. They extract descriptors from a database of images and
match the descriptors from image pairs. Popular SW, e.g., WildID [9], HotSpot-
ter [15] and I3S are using such approach for years. Recently, the focus moved to
local features extracted by deep networks such as ALIKED [71], DISK [60] or
SuperPoint [18]. The classical matching of local descriptors could be simply re-
placed by deep methods such as LightGlue [36], Superglue [53], and LoFTR [57]
that allow both extracting and matching of the local features. These match-
ing methods return potential matches and their confidence scores. They require
manual thresholding to determine which features are matched. In animal re-
identification, deep local features are slowly coming into focus; for example, [48]
used a combination of the SuperPoint features with the SuperGlue matching.

Deep embedding methods: The applications of deep methods in animal re-
identification are relatively new [12]. The simplest use case consists of extract-
ing embeddings from a neural network and feeding them to an SVM classi-
fier [14, 32, 41]. This approach has low computational demands, but the net-
work cannot be fine-tuned. Another simple approach involves fine-tuning a pre-
trained neural network [23,54]. These approaches usually require a fixed number
of classes (individuals), which is not realistic. For this reason, metric learning
methods (e.g., ArcFace [13], Siamese networks [30], and Triplet loss [19,40]) be-
came popular. Instead of classifying images into a pre-determined set of classes,
they measure differences between images and are, therefore, able to general-
ize into new individuals. Another approach is to use publicly available large-
scale, foundational models pre-trained on large datasets such as BioCLIP [56],
DINOv2 [44], and MegaDescriptor [13]. Since these models are primarily de-
signed for general computer vision tasks, they are not adapted for the nuances
of wildlife re-identification, which heavily relies on fine-grained patterns. This
was addressed by MegaDescriptor [13], the Swin-based foundational model for
animal re-identification that was trained on over 30 datasets (collected using
WildlifeDatasets) using ArcFace loss [17].

https://github.com/daniel-brenot/I3S-Interactive-Individual-Identification-System-Desktop
https://github.com/WildlifeDatasets/wildlife-datasets
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Species-specific methods are usually tailored to a particular species or closely
related species and involve pre-processing steps such as extracting patches from
regions of interest or accurately aligning images. Besides, they are not transfer-
able to other species. Examples of these methods are Amphident [21] which find
matching pixels within newt patterns or CurvRank v2 [42] and finFindR [66],
which match the fin curvatures to identify mantas, dolphins, or whales.

3 Methodology

In this section, we describe the similarity scores based on deep embeddings and
local feature matching and introduce the proposed WildFusion, a method for
finding an image from a database of images x1, . . . , xD closest to query image xq.

Note: For wildlife re-identification, we employ a standard setting inspired by
practical applications in animal ecology, widely used in automated animal re-id
studies [4, 13]. This setting corresponds to the image retrieval problem, where
the goal is to find the most visually similar images (whose identity is used as
prediction) in the database for a given query image based on a similarity metric.

3.1 Global similarity score

Given an image x, we use a neural network f(x) to extract a fixed-length em-
bedding. The network f(x) is a complex function that maps images into embed-
ding space where the representations of images depicting the same animal are
closer together, while those of different individual animals are distinctively sep-
arated. Common architectures of neural networks include convolutional [38, 68]
or transformer-based [20, 37] architectures and are often trained with metric
learning, e.g., ArcFace [17] and Triplet loss [55], to promote separability in the
embedding space. The similarity between images is calculated as the similarity
between their representation in the embedding space. Formally, we define the
global similarity between two images x0 and x1 as the cosine similarity between
their corresponding deep embeddings extracted by neural network f :

sG(x0, x1) =
f(x0) · f(x1)

∥f(x0)∥∥f(x1)|
. (1)

3.2 Matching based similarity score

We derive a similarity metric based on local feature matching as the number
of found significant matches. The feature matching methods return a list of
potential matches and their confidence score. We declare a match to be significant
if its confidence score is above some threshold µ. Formally, given two images x0

and x1 with the number of matches M(x0, x1) with confidence scores cm(x0, x1),
we define the local similarity metric as

sL(x0, x1) =

M(x0,x1)∑
m=1

I
(
cm(x0, x1) > µ

)
, (2)
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where I is the counting (0/1) function. This approach requires the tuning
of the thresholding hyperparameter µ, where large values of µ allow for a small
number of high-quality matches, while low values of µ result in a larger amount
of matches with potentially lower quality. As we empirically show in Section 6.1,
all considered feature matching methods are robust to µ selections with µ = 0.5
being reasonable choice in most scenarios.

3.3 Score calibration

Calibration refers to rescaling model outputs so that they could be interpreted
probabilistically. In our case, it is required to normalize the outputs of multiple
models to the common range [0, 1]. Predictions of well-calibrated model reflect
confidence in the given class predictions [27].

We apply calibration to the predicted similarity scores. The similarity scores
are used for comparison and ranking in image retrieval, with the magnitude of
the scores having no direct interpretation. We use calibration to ensure that the
predicted similarity score corresponds to the probability that the images in a
pair have the same identity. We construct calibrated scores from either global or
matching-based scores using a calibration function fcal : R → [0, 1].

ŝ(x0, x1) = fcal(s(x0, x1)). (3)

A common approach for constructing fcal is Platt scaling [49], which involves
fitting a single-variable logistic regression with uncalibrated scores as inputs.
Another widely used method is isotonic regression [70], a variant of binning re-
gression with a monotonicity constraint. Given uncalibrated scores, it learns a
non-decreasing piecewise constant function. However, for our application in rank-
ing and image retrieval, we require a strictly increasing function to handle ties in
scores. To achieve this, we first apply the isotonic regression and second interpo-
late the bin centers using a Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP) [25], which performs cubic interpolation while preserving monotonicity.
This procedure results in the required strictly increasing calibration function.

3.4 WildFusion – Calibrated score ensembling

To construct an ensemble, we consider K models with similarity scores si(x0, x1)
for a pair of images (x0, x1). The calibrated scores ŝi(x0, x1) are interpreted as
estimates of same true probability P (id(x0) = id(x1) | x0, x1). To denoise the
prediction, we assume the probabilities to be independent observations with
additive noise. The WildFusion score is thus a weighted average of n calibrated
scores:

sF (x0, x1) =

K∑
i=1

wiŝi(x0, x1), (4)

where the weights should reflect the variance of the additive noise in the
score. If we assume that all scores have similar variance, equal weights wi =

1
n

are selected, and the weighted average reduces to the simple average.
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Fig. 2: Distinct animal features for re-identification. Based on the natural vi-
sual appearance, the most distinguishable features for animals are spots, stripes, facial
landmarks, and the shape of body parts (e.g., ears for elephants and fin for whales).

4 Datasets

We evaluate WildFusion on 17 datasets6 that include diverse species of ani-
mals. The datasets were acquired with the help of the recently developed library
Wildlife Datasets [13], which allows easy access to the datasets and provides
unified dataset splits. We selected subsets of the datasets that are saturated in
performance or have a large number of images. Sample images from selected
datasets are shown in Figure 2. For basic statistics of the datasets, see Table 1.

To construct the appropriate training (database) and test (query) datasets,
we followed the methodology proposed in [13]. However, while analyzing this
procedure, we discovered inconsistencies caused by the incorrect loading of im-
ages for ATRW and NDD20 datasets due to multiple identities in one image. For
these datasets, we fixed the loading by applying the appropriate bounding box
or segmentation mask. Therefore, as loaded images are not exactly the same,
the achieved results for these two datasets are higher than in the original work.

Table 1: Characteristics of selected datasets. †Used in zero-shot scenario.

category # of images # of individuals

ATRW [34] tigers 5,415 182
CowDataset† [26] cows 1485 13
GiraffeZebraID [47] giraffes, zebras 6,925 2,056
Giraffes [40] giraffes 1,393 178
HyenaID2022 [59] hyenas 3,129 256
LeopardID2022 [59] leopards 6,806 430
NyalaData [19] nyalas 1,942 237
SealID [43] seals 2,080 57
SeaStarReID2023† [63] starfish 2187 95
SeaTurtleID [4] sea turtles 7,774 400
WhaleSharkID [29] whale sharks 7,693 543
ZindiTurtleRecall [3] sea turtles 12,803 2,265
BelugaID [2] belugas 5,902 788
CTai [24] chimpanzees 4,662 71
IPanda50 [64] pandas 6,874 50
NDD20 [58] dolphins 2,657 82
NOAARightWhale [1] whales 4,544 447

6 For zero-shot, we use only two that were not used in the MegaDescriptor training.

https://github.com/WildlifeDatasets/wildlife-datasets
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5 Experiments

Evaluation protocol. We consider the same closed-set splits as in [13], meaning
that all individual animals are both in the database (training) and query (test)
sets. We approach the problem as image retrieval: for each image in the query
set, we find an image in the database and make the query prediction have the
same identity as the image from the database. Performance in all experiments
is measured as top-1 accuracy.

WildFusion relies on finding hyper-parameters and fitting calibration models.
The standard approach involves splitting the training set into development and
validation parts, which are used for the selection of the best hyper-parameters
and fitting calibration models. However, this approach is not applicable in our
case because the MegaDescriptor was trained on the whole training set and can-
not be used for validation. We addressed this issue by splitting the original test
set into a validation set and a new, smaller test set using a 0.5 ratio. We es-
timated both µ and the calibration function on the validation set and utilized
them for the final prediction on the test set. Due to this change in test set, our
results are not directly comparable to the results reported by [13].

Technical details. To construct the global scores, we use embeddings extracted
by MegaDescriptor [13] and DINOv2 [44]. For local matching scores, we use
LightGlue [36] feature matching with local descriptors ALIKED [71], DISK [60],
and SuperPoint [18]. We use at most 512 keypoints and their appropriate descrip-
tors, extracted from images resized to 512×512. For matching with LoFTR [57],
we use the outdoor variant trained on the MegaDepth [35] dataset. On input, we
use image pairs with both images resized to 512× 512. A total of four local fea-
ture matching methods were considered to construct matching-based scores. All
these methods were taken off-the-shelf, and none were fine-tuned or retrained. We
perform the experiments on the datasets described in Section 4. In the baseline
WildFusion, we search for optimal hyperparameter µ from Equation 2 separately
for each dataset. The calibrated scores are given equal weights wi. The summary
of settings is in Table 2.

Table 2: WilfFusion settings overview. We test a variety of state-of-the-art local
and global methods for animal re-identification and image retrieval. The calibration is
done using Logistic or Isotonic regression.

Components: Local matching methods: Global similarity methods:
– LoFTR – MegaDescriptor-L-384
– LightGlue + SuperPoint – DINOv2-512
– LightGlue + Disk
– LightGlue + Aliked

Calibration: Isotonic regression with PCHIP interpolation
Logistic regression

Fusion: Average with equal weights wi
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5.1 Baseline Performance

WildFusion clearly outperforms MegaDescriptor in most scenarios. When us-
ing all available scores, WildFusion shows superior performance on 16 out of
17 datasets, with only one dataset, ZindiTurtleRecall, showing a slight decrease
in accuracy. The average accuracy improvement is substantial, with WildFusion
(all) achieving 84.0% compared to MegaDescriptor’s 75.5%, representing a no-
table average gain of 8.5 percentage points. The most significant improvements
are seen in datasets like NDD20, WhaleSharkID, SeaStarReID2023, and SealID,
where WildFusion shows accuracy gains of over 14 percentage points.

Interestingly, even when using only local matching scores, WildFusion main-
tains competitive performance. It outperforms MegaDescriptor on 11 out of 17
datasets with average accuracy (78.5%), which is better than MegaDescriptor
by 3.0 percentage points. This suggests that the local matching scores are quite
powerful on their own, without any need for fine-tuning on animal datasets.
More details about the results, including per dataset performance, are in Ta-
ble 3. Besides, we provide a qualitative evaluation in Figure 3

Table 3: WildFusion’s performance in comparison with MegaDescriptor. On
average, WildFusion, outperforms MegaDescriptor, even with just local descriptors.
WildFusion with all local and deep descriptors ranks the best on all but two datasets.

MegaDescriptor (all) (local)
Large-384 WildFusion ∆ WildFusion ∆

ZindiTurtleRecall 74.24 71.90 -2.34 45.62 -28.62
CTai 91.86 92.08 +0.21 81.80 -10.06
ATRW 97.96 98.51 +0.56 98.33 +0.37
CowDataset 98.66 100.00 +1.34 100.00 +1.34
SeaTurtleIDHeads 91.18 95.00 +3.82 93.82 +2.63
IPanda50 85.76 89.68 +3.92 81.40 -4.36
NyalaData 41.59 46.26 +4.67 25.23 -16.36
BelugaID 67.61 72.46 +4.85 63.07 -4.54
NOAARightWhale 43.25 49.25 +6.00 42.18 -1.07
Giraffes 91.04 99.25 +8.21 98.51 +7.46
HyenaID2022 78.41 90.48 +12.06 88.25 +9.84
GiraffeZebraID 82.98 95.74 +12.77 94.81 +11.84
LeopardID2022 77.82 90.93 +13.11 89.40 +11.58
SealID 78.47 92.82 +14.35 90.91 +12.44
SeaStarReID2023 82.24 99.53 +17.29 100.00 +17.76
WhaleSharkID 62.04 80.33 +18.28 77.68 +15.64
NDD20 38.35 63.53 +25.19 63.16 +24.81

Average 75.50 83.99 +8.49 78.48 +2.98
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Fig. 3: Qualitative performance. Selected examples where WildFusion changed the
decision of the MegaDescriptor-L on NyalaData, WhaleSharkID, and ZindiTurtle; three
correct and false samples. We suspect that some wrong matches are mislabeled data.
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6 Ablation Studies

This section presents a set of ablation studies to empirically validate the design
choices behind the WildFusion.

6.1 Effect of local matching score threshold
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Fig. 4: Effect of µ on performance.
Full lines represents constant µ, and
dotted lines optimal µ found on val-
idations set for each dataset. Fixing
µ = 0.5 provides comparable results to
the best µ based on validation set.

The hyperparameter µ controls the trade-
off between low-quality matches and fewer
high-quality matches. When µ is low, the
score is influenced by many low-quality
matches, often presented in the back-
ground. When µ is very high, it filters out
most of the matches, leading to a loss of
information and resulting in a zero score
for nearly all pairs.

Comparing performance scores with
constant µ and µ selected based on the
validation set suggests that local meth-
ods are robust to µ selection, and select-
ing any µ values between [0.4, 0.6] is a
good choice. Interestingly, local methods
perform better with µ=0.45 fixed for all
datasets than searching for optimal µ on
the validation set. When local matching
scores are combined with global scores,
the range of suitable µ values is wider and
extends from 0.4 to 0.8. This shows that
adding global scores to the ensemble re-
duces the downside of having zeros in the
score for large µ values (see Figure 4).

6.2 Effect of score selection

WildFusion’s versatility allows it to fuse any score. As mentioned, using Wild-
Fusion only with all local matching scores outperforms the MegaDescriptor-L
global score. When we included the global score from the general-purpose fea-
ture extractor DinoV2, performance improved only marginally, highlighting the
importance of fine-tuning the deep embedding model.

Using the MegaDescriptor-L global score with at least one local matching
score significantly outperforms using MegaDescriptor-L alone. Combining it with
LG-ALIKED achieves the highest accuracy of 83.0%, followed by LoFTR at
81.4%. LG-SuperPoint and LG-DISK also show comparable performance with
accuracies of 80.6% and 81.1%, respectively. Combining the global score with all
local matching scores further improves performance, suggesting that the local
matching scores are mostly uncorrelated and perform well in the ensemble. More
details can be found in Table 4.
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Table 4: Ablation on local and global score fusion. We report WildFusion’s
performance using various local and global methods. Combining local methods with
fine-tuned global scores of MegaDetector-L achieves the best results.

Global
Local

None LG-DISK LG-SP LG-ALIKED LoFTR all

None - 68.9 70.1 72.2 74.8 78.5
DINOv2 47.5 70.4 71.6 73.7 74.8 78.8
MegaDescriptor-L 75.5 81.1 80.6 83.0 81.4 84.0

6.3 Effect of calibration

Using isotonic regression for calibration yields marginally better results on av-
erage compared to logistic regression (83.9% accuracy). However, there is a dis-
crepancy in performance between the datasets. For example, using logistic re-
gression was better on NDD20 (+3.0%) and ZindiTurtleRecall (+ 2.7%), but
it significantly underperformed on NyalaData (-6.5%) compared to the isotonic
regression. This suggests that the poor performance of WildFusion on Zindi-
TurtleRecall can be related to incorrect calibration.

How much data do we need for calibration? To test this, we create vari-
ously sized subsets of labeled images from database and validation sets, such that
at least 2 positive and 2 negative pairs can be created. Pairs created from this
subset are used for calibration and finding µ. We perform additional experiments
with µ fixed to 0.5 to isolate the effect of low data calibration from finding µ. As
visualized in Figure 5, isotonic regression performs better than logistic regression
in low data scenarios, both with optimized and fixes µ. Calibration with fixed
µ is significantly better for a smaller number of samples but yields marginally
worse results when a lot of labeled data is available. In general, calibration is
very data efficient. For example, fixing µ to 0.5 and calibrating each dataset us-
ing only 10 labeled images still gives a reasonable 79.5% accuracy. Adding more
data to the calibration further increases the performance of up to 200 samples,
where additional data only gives marginal improvements. Our results suggest
that WildFusion is viable even with very few labeled samples.

6.4 Constraining number of comparisons

Given a database with M samples and a query with N samples, methods based
on local features often need to perform pairwise comparisons, needing M × N
comparisons. Since many modern matching algorithms are based on neural net-
works M × N , neural network inferences are required. With the increasing
database size, the computational time quickly becomes unfeasible; therefore,
the calculation of all local scores remains a viable option only for moderately
sized datasets.
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Fig. 5: Ablation on optimal number of images for model calibration. Isotonic
regression calibration with fixed µ = 0.5 for all datasets outperforms other approaches
in low data scenarios.

Shortlist strategy. We consider a scenario where we have two types of scores,
one cheap to calculate, such as global score sG from MegaDescriptor or DinoV2,
and one expensive, such as WildFusion with local matching scores sW . We follow
the shortlist strategy [69] and use cheap global scores to filter candidate sam-
ples. The expensive scores are calculated for a restricted size shortlist to validate
and re-rank the top matches. The running time is controlled by a computational
budget B in terms of the number of expensive score evaluations per query image.

Results. Using the shortlist strategy, we are efficiently able to utilize the Wild-
Fusion scores sW , which are costly to calculate. On average, budget B = 300 is
enough to reach accuracy comparable to calculating all scores. For example, on
SeaTurtleIdHeads, WildFusion needs only about 200 sW calculations to reach
its peak performance. With a database size of 6063, this results in more than
a 30-fold increase in inference speed. Interestingly, performance at B = 103 is
slightly better than using all comparisons. It indicates that local matching scores
in WildFusion are prone to some degree of false positive matches when applied
to all images in the database. A more detailed visualization of the speed-up is
in Figure 6.
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Fig. 6: Rate of performance improvement with increasing budget. The short-
list strategy allows adding more computational resources to improve performance, up
to a budget of B = 200.
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7 Zero shot performance

Encouraged by the fact that calibration works well even with a low number of
data points to achieve reasonable performance, we conducted an experiment in a
zero-shot setting, meaning no data is needed prior to inference. We split datasets
into disjoint subsets. For each score, we trained a single calibration model on
one subset and evaluated it on a different subset, with µ = 0.5 fixed for all local
matching scores. This differs from the default setting, where subsets of the same
dataset were used for calibration and evaluation.

For the zero-shot experiment, we evaluated WildFusion using only local
matching scores without incorporating MegaDescriptor’s global scores, as the
latter had already been trained on the data. Our zero-shot WildFusion approach
achieved an average accuracy of 76.2%, which is 2.3 percentage points lower
than the accuracy obtained with dataset-specific calibration. Notably, this per-
formance is also 0.7 percentage points higher than the state-of-the-art fine-tuned
model MegaDescriptor-L-384, demonstrating the effectiveness of our method in
a zero-shot setting without fine-tuning or dataset-specific calibration. For more
detail about performance, see Table 5.

For both novel datasets not included in the MegaDescriptor training set,
WildFusion with local scores achieved a perfect 100% accuracy. In contrast, for
the CowsDataset, DINOv2 reached an accuracy of 96.0%, while MegaDescriptor
achieved 98.7%. Similarly, for the SeaStarReID2023 dataset, DINOv2 obtained
an accuracy of 82.2%, whereas MegaDescriptor reached 88.8%.

Table 5: WildFusion performance in zero-shot setting. No data from the eval-
uated dataset was used prior to test time (except Wahltinez et al. [63], which used
standard classification setting).

(local) [63]
MegaDescriptor-L DINOv2 WildFusion Wahltinez et al.

CowsDataset 98.7 88.8 100.0 –
SeaStarReID2023 82.2 96.0 100.0 99.9

17 datasets – 47.5 76.2 –

8 Conclusion

In this paper, we presented WildFusion, a novel approach to individual ani-
mal identification that leverages a calibrated similarity fusion of deep and local
matching scores. By combining deep features extracted from MegaDescriptor or
DINOv2 with local matching descriptors (e.g., LoFTR and SuperPoint), Wild-
Fusion achieves state-of-the-art performance across a wide range of datasets.
Our method is easy to use in real applications as it does not require training
and is usable out of the box with any pre-trained deep embedding models and
local feature-matching methods. Besides, the code was made public.



14 V. Cermak et al.

Even though the best results were obtained with dataset-specific calibration,
we have empirically shown that using WildFusion of only local similarity score
and with generic calibration still gives good performance, with mean accuracy
dropping only by 2.3% and still reduced the relative error of MegaDescriptor
by 44 percentage points. WildFusion’s flexibility was also further proven by its
strong performance in zero-shot settings tested on species "never seen before."

The scalability and generalization potential of WildFusion makes it suitable
for application across different species and environments, contributing signifi-
cantly to the field of animal re-identification.

Limitations: WildFusion leverages off-the-shelf local matching methods like
LoFTR and LightGlue, which were originally trained on datasets featuring static
objects. Therefore it is not optimized for matching animals, where the same
animal can be observed in various poses, lighting conditions and with occlu-
sions. Therefore, our work can be extended by adapting or retraining these local
feature-matching models specifically for animal identification tasks, potentially
improving the accuracy and robustness of the WildFusion approach. The same
applies to deep descriptors such as MegaDescriptor and DINOv2, which, if not
trained on that species, will most likely underperform.

WildFusion is best suited for offline analysis of existing databases. While we
introduced a method to address scalability, it remains insufficient for real-time
identification. Future research could explore the development of more efficient
algorithms to enable real-time processing and online identification.
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